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Validation of Monte Carlo simulation for discontinuity locations in space
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a b s t r a c t

Baecher disk model is the most commonly accepted and widely used 3-D discontinuity network model
(3DDNM). Monte Carlo simulation (MCS) for discontinuity locations is an important step for constructing
Baecher disk model. Uniform distributions are usually used to simulate the locations, based on the
assumption that trace spacings along a sampling line (SL) obey an exponential distribution. However,
no researchers have validated whether the trace spacings simulated using aforementioned method obey
the observed exponential distribution in the field. The aim of this study is to perform the validation using
a hypothetical 3DDNM. This study includes a brief review of the MCS procedure for discontinuity loca-
tions, construction of a hypothetical 3DDNM, and the goodness-of-fit test procedure for simulated trace
spacings along SL. Seven sampling line groups (SLG) are used, and each SLG contains twenty SL having a
same direction vector. The possible points of intersection between each SL and all simulated discontinu-
ities are obtained, the spacings of those points are calculated, Kolmogorov–Smirnov tests are used to test
the goodness-of-fit to the spacings along different SL, and the theoretical values and simulated values of
parameter k of exponential distributions for different SL are also calculated. The results show that: (a) for
all SL the trace spacings obey exponential distributions at the 5% significance level; (b) for all SLG the
simulated values of k fluctuate around their theoretical values, and the mean simulated values are very
close to its theoretical values; (c) therefore, it is valid to use uniform distributions to simulate locations in
space for those discontinuities, whose observed trace spacings follow exponential distributions. The
validation procedure developed in this study are also applicable to 3DDNM constructed for field cases.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

‘‘Discontinuity’’ is usually used to describe any separation in a
rock mass having zero or low tensile strength [1], including most
types of joints, weak bedding planes, weak schistosity planes,
weakness zones, and faults [2]. Discontinuities have significant
influence on the properties of rock masses as follows: the deforma-
tion [3,4], strength [5,6], permeability [7,8], stress–strain relation
[9], and the failure [10,11]. The main properties of discontinuities
to be determined are orientation, size, frequency, surface geome-
try, genetic type, and infill material [12,13]. Since discontinuities
are hidden in the actual rock masses, it is extremely difficult to
investigate all of them and their properties in three dimensions
[14]. In addition, discontinuities are generally developed in rock

masses randomly and in sets [15]. Therefore, it is widely accepted
to infer discontinuity characteristics from data sampled at exposed
rock faces (including both natural outcrops and tunnel walls) and/
or in boreholes [14,16–22], and then three-dimensional (3-D) dis-
continuity network models (3DDNM) [23–30] can be constructed.
Dershowitz and Einstein [25] provided an excellent review of the
development of these 3DDNM. Among these models, Baecher disk
model [23] is most commonly accepted, and widely used by large
number of researchers (e.g., references [21,24,27–30,31–37]).

One of assumptions of Baecher disk model is that the center
points of discontinuities are randomly and independently dis-
tributed in space forming a Poisson process [23]. The assumption
leads to an exponential distribution of trace spacings along a
sampling line (SL), in agreement with many reported field studies
(e.g., references [15,23,38,39]). Therefore, numerous researchers
(e.g., references [20,21,23,24,27–36]) used uniform distributions
to simulate the discontinuity locations. Thus the simulation
procedure is also very simple and convenient. However, some
researchers may ignored that the prerequisite of using uniform
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distribution to simulate locations is that the observed trace spac-
ings obey exponential distributions in the field, and no researchers
have validated whether the simulated trace spacings using uniform
distribution to simulate locations obeys the observed exponential
distribution in the field. The aim of this study is to perform the
validation using a hypothetical 3DDNM.

2. Review of the MCS procedure for discontinuity locations

In Baecher disk model [23] discontinuities are assumed as thin
circular disks, hence their locations can be descripted by the coor-
dinates of center points of circular disks. Assume that we need to
generate a set of discontinuities in a B � L � H block (Fig. 1), in
which the east direction (E) and north direction (N) are the positive
directions of the x-axis and y-axis, respectively. The number of
generated discontinuities in the interested block (Fig. 1) is con-
trolled by only one parameter, the 3-D density (denoted as kv) that
specifies the average number of distribution center points within
unit volume of rock mass [35].

As stated previously, the uniform distributions can be used to
simulate the coordinates of center points as follows:

xi ¼ Buxi

yi ¼ Luyi

zi ¼ Huzi

8><
>:

ð1Þ

where uxi, uyi and uzi are generated random numbers, which are dis-
tributed according to the uniform (0,1) distribution; i is the serial
number of generated discontinuity, and can be equal to 1, 2, . . .,
and N. Note that N is the total number of generated discontinuities
in the interested block and can be expressed as:

N ¼ BLHkv ð2Þ

kv cannot be directly measured in field, and would be usually
inferred from one-dimensional density. According to Kulatilake
et al. [27], the kv can be estimated by

kv ¼
4km

pEðD2ÞEðjn � ijÞ
ð3Þ

where km is the one-dimensional density along the mean normal
vector of the discontinuity set, and is equal to the reciprocal of

Fig. 1. Cartesian coordinate system (x,y,z) and the interested block.

Nomenclature

(xi, yi, zi) components of Ci in (x, y, z) coordinate system
(xil, yil, zil)

components of Pil in (x, y, z) coordinate system
(xl, yl, zl) components of Pl in (x, y, z) coordinate system
(xlk, ylk, zlk) components of Plk in (x, y, z) coordinate system
(xlk+1, ylk+1, zlk+1) components of Plk+1 in (x, y, z) coordinate sys-

tem
3-D three-dimensional
3DDNM 3-D discontinuity network model(s)
B breadth of the interested block
Ci center point of discontinuity i
D diameter of discontinuity
Di diameter of discontinuity i
dili distance between Pil and Ci

Dn maximum difference between the empirical cumulative
frequency and theoretical cumulative distribution func-
tion

Da
n critical values at significance level a.

E(�) expected value of the function within the parentheses
H height of the interested block
i discontinuity number
i mean unit normal vector of the discontinuity set
K–S Kolmogorov–Smirnov
L length of the interested block
l a sampling line
l upper unit vector along the SL l
MCS Monte Carlo simulation
m meter(s)
m2 square meters
N total number of simulated discontinuities in the inter-

ested block

n unit normal vector of discontinuity
nm mean unit upper normal vector of the discontinuity set
Pil point of intersection between sampling line l and dis-

continuity i
Pl a point on the sampling line l
Plk, Plk+1 two adjacent points of intersection on l
SL sampling line(s)
SLG sampling line group(s)
slk kth spacing along l or spacings of Plk and Plk+1

sm spacing along the mean normal vector of the disconti-
nuity set

smk kth spacing along nm

t parameter of the parametric equation
uxi, uyi and uzi generated random numbers distributed according

to the uniform (0,1) distribution
a significance level
al plunge of the sampling line l
bl trend of the sampling line l
cml angle of intersection between nm and l
di dip angle of discontinuity i
dm mean dip angle of the discontinuity set
hi dip direction of discontinuity i
hm mean dip direction of the discontinuity set
k parameter of an exponential distribution
km value of parameter k of the exponential distribution fol-

lowed by the spacings along the mean normal vector of
the discontinuity set or one-dimensional density of dis-
continuities along the mean normal vector of the dis-
continuity set

kv 3-D density of discontinuities

104 J. Zheng et al. / Computers and Geotechnics 67 (2015) 103–109



Download English Version:

https://daneshyari.com/en/article/254647

Download Persian Version:

https://daneshyari.com/article/254647

Daneshyari.com

https://daneshyari.com/en/article/254647
https://daneshyari.com/article/254647
https://daneshyari.com

