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a b s t r a c t

In this paper, a micromechanical damage model formulation for closed frictional microcracks considering
the coupling between frictional sliding and damage evolution was reviewed. Then, the sliding criterion
for closed microcracks was modified to consider the matrix containment of sliding on microcracks.
Then, the adjusted model was programmed as a constitutive model to simulate the UCS test. On the other
hand, some different forms of damage criteria have been proposed in phenomenological way in literature
for micromechanical damage models. The effect of damage criterion on simulated sample behavior was
studied with a variation of damage criterion input parameter. The exponential and tangential damage cri-
teria are capable to control the hardening and softening behavior. Furthermore, the influence of matrix
containment of sliding on microcracks faces on the simulated sample behavior was studied in this paper.
According to the numerical results, the calculated strength of the simulated sample is sensitive to the
matrix resistance parameter against sliding on microcracks. The simulation results are in agreement with
the experimental data.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The rock materials demonstrate nonlinear mechanical response
and irreversible behavior in particular under high compressive
stress states. Under compressive stress fields, frictional sliding on
microcracks and damage induced by microcracks are both impor-
tant mechanisms of inelastic deformations in rock material. To
simulate the coupled plastic deformation and induced damage,
phenomenological damage models have been first proposed in
the framework of irreversible thermodynamics, for instance
Dragon and Mroz [1], Ju [2], Hayakawa and Murakami [3],
Chiarelli et al. [4], Shao et al. [5], Voyiadjis et al. [6], Mortazavi &
Molladavoodi [7] and others. In spite of its easily formulation
and implementation, there are some concepts not based on physi-
cal mechanisms at microscopic scale. Whereas the microcracked
rock can be considered as a heterogeneous composite with a
matrix weakened by microcracks. In the micromechanical damage
model, a micro to macro transition called homogenization or
up-scaling methods lead to evaluate the overall (effective) elastic
properties. After that, microstructure evolution such as the growth
of microcracks which gives rise to a reduction of macroscopic stiff-
ness or strength and inelastic deformation is determined by

damage evolution rule [8]. The micromechanical damage models
first have been formulated for open and frictionless microcracks
condition [9,10]. Zhu et. al. [11,12] developed a micromechanical
damage model for closed microcracks state under compressive
stress fields. Under closed microcracks condition, Zhu et. al.
[11–13] & Xie et. al. [14] considered coupling between frictional
sliding on microcracks faces and microcrack growth (damage
evolution). Zhu et. al. [11–13] compared capability of different
homogenization schemes to simulate semi-brittle material
behavior.

In this paper, this formulation was reviewed briefly. Then, the
sliding criterion of microcracks was modified in order to consider
the matrix containment of sliding on microcracks. Next, the modi-
fied micromechanical damage model was programmed in C++
environment and implemented into DEM code to simulate the
compression strength test. On the other hand, there are some dif-
ferent forms of damage criteria proposed in phenomenological way
in literature for micromechanical damage models. The qualitative
capabilities of damage criteria for micromechanical damage mod-
els to simulate the rock material behavior were studied in this
paper.

Throughout the paper, the following notation on dyad
product of any second-order tensors A and B will be used:

A� B
� �

¼ AijBkl. Double dot product is defined on fourth-order
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tensor ðCÞ and second order tensor ðEÞ as C : E
� �

¼ CijklEkl . With

the second rank identity tensor, the usually used fourth order iso-
tropic tensors I and J are expressed in components form as
Iijkl ¼ 1=2 dikdjl þ dildjk

� �
and Jijkl ¼ 1=3 dijdkl

� �
respectively. The

deviatoric operator K is then obtained by K ¼ I� J .

2. Homogenization principle

The rock microstructure can be described by the elasticity ten-
sor dependent on the microscale coordinates C zð Þ. A representative
volume element (RVE) V occupying microcracks and having the
boundary @V is adopted as shown in Fig. 1.

The macroscopic quantities such as hri and hei are defined as
the volumetric average of the microscopic fields. Because of the
uniqueness of the solution, the local strain tensor e inside the
domain V depends linearly on the macroscopic uniform strain
tensor E applied on @V .

e ¼ A : E ð1Þ

A is a fourth-order strain concentration tensor. The constitutive
relation for each phase is given in the form rðzÞ ¼ CðzÞ : eðzÞ. By
averaging of the microscopic stress and using Eq. (1), the macro-
scopic and homogenized stiffness tensor can be explained as

Chom ¼ hCðzÞ : Ai ð2Þ

Inhomogeneous material can be described by an equivalent
homogenous material. Based on Eshelby solution [15] of equivalent
homogenous material, the concentration tensor of each phase ðAcÞ
is constant. Therefore, the stiffness tensor of the cracked media can
be expressed as

Chom ¼ Cs þ
XN

c¼1

uc Cc � Csð Þ : Ac ð3Þ

where uc and Ac are respectively the volume fraction and the con-
centration tensor of the rth microcrack family. The RVE is composed

of an isotropic linear elastic matrix with stiffness tensor Cs and of a
random distribution of microcracks with stiffness tensor CcðCc ¼ 0
in its opening state). To evaluate the homogenized stiffness tensor
(ChomÞ, the microcrack concentration tensor (AcÞ must be
determined. It is generally used from the Eshelby solution [15]
and analytical schemes such as dilute, Mori and Tanaka [16],
Ponte-Castaneda and Willis [17] schemes to evaluate the microc-
rack concentration tensor Ac in Eq. (3).

The Ponte-Castaneda and Willis [17] scheme can consider both
effects of the shape and spatial distribution of microcracks rather
than other schemes. Among the considered homogenization
schemes, only the PC-W one has the ability of properly taking into
account the influences of interactions between microcracks [13]. In
analytical schemes based on Eshelby solution, there is the fourth
order Hill tensor P� to define the Eshelby tensor S� ¼ P� : Cs.
However, In Ponte-Castaneda and Willis [17] scheme, there is
another fourth order tensor ðPdÞ to consider the inclusion dis-
tribution. For a spherical distribution of inclusion Pd is [13,17]

Pd ¼
a1

3ks Jþ a2

2ls
K with a1 ¼

3ks

3ks þ 4ls

a2 ¼
6 ks þ 2ls
� �

5 3ks þ 4ls
� � ð4Þ

ks and ls are the bulk and shear modulus of the matrix respectively.
When all microcracks have the same shape, the homogenized stiff-
ness tensor can be explained as [17]

Chom ¼ Cs þ I� T : Pd½ ��1 : T with T ¼ u Cc � Csð Þ�1 þ P�

h i�1

ð5Þ

2.1. Damage variable

On the assumption that the RVE of the rock material consists of
penny shaped flat microcracks and solid matrix. Also the microc-
racks are randomly distributed in the solid matrix. According to
Fig. 1, each microcrack looks like a flat elliptic with radius a, half
opening c, and opening to length aspect ratio of microcrack
ð� ¼ c

aÞ. The volume fraction of microcracks in RVE can be taken
from

u ¼ 4
3
pa2cN ¼ 4

3
p�d; d ¼ N a3 ð6Þ

N is the microcracks density of RVE. d is the damage variable used
in micromechanical models. For open microcracks (Cc ¼ 0Þ, by sub-
stituting u from Eq. (6) into Eq. (5), T takes as the following form

Nomenclature

A fourth-order concentration tensor
Chom macroscopic and homogenized stiffness tensor
uc volume fraction
Cs stiffness tensor of solid matric
Cc stiffness tensor of microcrack
P� fourth order Hill tensor
Pd fourth order inclusion distribution tensor
ks matrix bulk modulus
ls matrix shear modulus
N microcracks density
d damage variable
u½ � local displacement discontinuity

Ec total macroscopic inelastic strain tensor

b opening-closing
c shear sliding vector

W free energy of the RVE
rc local stress field applied on microcracks

Sc deviator part of rc

pc mean part of rc

a frictional parameter of the microcracks faces
Fd thermodynamic force associated with damage
f damage criterion
d0 initial damage variable
dc critical damage variable
k:d damage multiplier

Fig. 1. (a) RVE of microcracked rock; (b) schematic representation of a penny-
shaped microcrack [13].
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