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a b s t r a c t

The main objective of this paper is to construct a robust and reliable metamodel for the mechanized tun-
nel simulation in computationally expensive applications. To accomplish this, four metamodeling
approaches have been implemented and their performance has been systematically evaluated through
a comparative study utilizing pure mathematical test functions. These metamodels are quadratic polyno-
mial regression, moving least squares, proper orthogonal decomposition with radial basis functions, and
an extended version of the latest approach. This extended version has been proposed by the authors and
named proper orthogonal decomposition with extended radial basis functions. After that, a system iden-
tification study for mechanized tunneling has been conducted through the back analysis of synthetic
measurements. In this study, the best performing metamodel, that is the one suggested by the authors,
has been employed to surrogate a complex and computationally expensive 3D finite element simulation
of the mechanized tunnel. The obtained results demonstrate that the proposed metamodel can reliably
replace the finite element simulation model and drastically reduce the expensive computation time of
the back analysis subroutine.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Most of the advanced geotechnical systems are described
through complex mathematical models which cannot be easily
solved by analytical approaches. In such cases, numerical tech-
niques such as Finite Element Method (FEM) are used to simulate
the responses of the system. During the past decades, along with
the significant progresses in computer science, numerical simula-
tions have been established as powerful tools used practically in
all fields of engineering and science. In a number of situations,
engineering problems require using computationally expensive
simulations. Therefore, routine tasks such as design optimization
[1], probabilistic studies of uncertainties [2], parameter identifica-
tion [3–6], inverse problem [7,8] or sensitivity analysis become
impossible since they require thousands or even millions of simu-
lations. A common practice for engineers to solve this problem is to
develop simplified models to approximate the original model with
high level of accuracy. The approximated model which can capture
the behavior of the original model is called metamodel or surrogate
model.

Generally, research about metamodeling can be categorized
into three groups: (1) papers in which a new metamodeling

approach is introduced; see e.g. [8–10], (2) papers which perform
comparative study between existing metamodeling approaches;
see e.g. [11–14] and (3) papers which apply the metamodeling con-
cept for engineering problems; see e.g. [7,12]. In this paper, first, an
introduction to some existing approaches i.e. Polynomial Regres-
sion (PR), Moving Least Squares (MLS), and Proper Orthogonal
Decomposition with Radial Basis Function (POD-RBF) is presented
then a metamodeling approach named Proper Orthogonal Decom-
position with Extended Radial Basis Function (POD-ERBF) is formu-
lated. Subsequently, a comparative study is performed. That is, the
performance of the selected metamodeling methods is evaluated
using different types of purely mathematical functions. Finally,
the POD-ERBF approach is applied to a real-world geotechnical
problem. A three dimensional tunnel model simulated by finite
element method is replaced by the POD-ERBF metamodel. With
this simplified model, the inverse analysis of synthetic measure-
ments is carried out to identify the material parameters of the soil
around the tunnel.

2. Metamodeling approaches

The main goal of metamodeling is to approximate an unknown
function u which describes the behavior of an engineering prob-
lem. The only available information is the input and output data
in the form of some scattered samples like (x, u(x)) obtained from
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physical or computational experiments. x is a vector of s parame-
ters and uðxÞ is a vector quantity which gives the function value
at m observation points. In order to construct a metamodel, two
main components are required: (1) the input parameter matrix (P)
which includes the s parameters of np sample points (2) the matrix
of system responses or snapshot matrix (U) in which the np function
values of m observation points are recorded. Therefore, P and U
matrices are of size s� np and m� np respectively. Depending on
the structure of P and U, several techniques for approximating u
may be applicable. As mentioned before, in this paper, four meta-
modeling approaches, including PR, MLS, POD-RBF and an exten-
sion of POD-RBF method named POD-ERBF are selected for the
comparative study.

2.1. Polynomial regression

Polynomial Regression (PR) is a technique for producing a meta-
model using low order polynomials (quadratic or cubic) in a rela-
tively small region of parameter space. In this paper, the
approximation function is assumed to be a quadratic polynomial
function as below [12–14]:

~u xð Þ ¼ b0 þ
Xs

i¼1

bixi þ
Xs

i¼1

biix
2
i þ

Xs
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Xs

j>i
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b ¼ ½b0;b1;b2; . . . ;bs;b11;b22; . . . ;bss;b12; b13; . . . ; bðs�1Þs�
T
; ð3Þ

here, xi is the ith variable of input point x and s is the number of
input parameters or dimension of the input space. Both X and b vec-
tors have k ¼ ð1þ sÞð2þ sÞ=2 components [15]. The unknown coef-
ficients b are calculated using least square regression. For this
reason, the following error function is to be minimized:

J ¼
Xnp

i¼1

~uðxiÞ � uðxiÞ
�� ��2

; ð4Þ

where xi is the ith sample point and np is the total number of sam-
ples. Substituting b in Eq. (1), the PR metamodel is created.

2.2. Moving least squares

The Moving Least Squares method (MLS) was proposed by Lan-
caster in [10]. This approach uses the same logic as the polynomial
regression but the coefficients b are functions of the spatial coordi-
nates and they change from one point to another point. These coef-
ficients can be determined if the number of sample points used for
interpolation is equal to the number of coefficients. In MLS
method, the unknown coefficients b are determined by minimizing
the weighted least squares error JðxÞ [11]:

JðxÞ ¼
Xnp

i¼1

wiðxÞkXTðxiÞbðxÞ � uðxiÞk2; ð5Þ

where XTðxÞ is given according to Eq. (2). wiðxÞ is the weight func-
tion associated with the ith sample point. Different weight func-
tions can be found in the literature (see [10,11,16]). One of the
most common types is the Gaussian weight function of exponential
type, which is given as:

wiðxÞ ¼ eð�kx�xik2=h2Þ; ð6Þ

where x� xi
�� �� is the euclidean distance between the points x and xi

and parameter h is a constant value called spacing parameter. It
should be mentioned here that the MLS method satisfies a condition
in which the real function u and the approximation ~u are equal at all
np sample points.

2.3. POD-RBF

Proper Orthogonal Decomposition (POD) combined with Radial
Basis Functions (RBF) is a recently developed method by Buljak [9].
POD-RBF finds the projection of the system response on a reduced
space and then the approximation is carried out by using radial
basis functions. The schematic flow-chart of POD-RBF method
has been depicted in Fig. 1. The algorithm consists of two main
parts (1) proper orthogonal decomposition of the snapshot matrix
(2) interpolation using radial basis functions. The basic idea of
proper orthogonal decomposition method is to present the snap-
shot matrix U as:

U½ �m�np
¼ U½ �m�np

A½ �np�np
; ð7Þ

here, A is the amplitude matrix and U includes the proper orthogonal
basis vectors. The POD basis vectors U can be obtained by finding the
normalized eigenvectors and eigenvalues of the symmetrical matrix
D ¼ UT U (see [17]). Since the matrix U fulfills the orthogonality
condition i.e. UT ¼ U�1, the amplitude matrix is calculated as
follows:

A½ �np�np
¼ UT
� �

np�m U½ �m�np
: ð8Þ

The size of matrix U can be reduced if the basis vectors with small
eigenvalues are omitted. To accomplish this, first the basis vectors
are sorted in a descending order according to the magnitude of their
eigenvalues. Then, the first k columns of matrix U are taken and the
rest are removed (k 6 np). In this way, the reduced basis vectors UT

can be obtained. Subsequently, the reduced amplitude matrix A is
calculated as follows:

A
h i

k�np

¼ UT
� �

k�m U½ �m�np
: ð9Þ

The second step is to use a linear combination of radially symmetric
functions (Radial Basis Functions) in order to approximate the
reduced amplitude matrix A. Having np sample points in the s
dimensional space, each component of reduced amplitude matrix
A is computed by radial functions as follows:

aj
l ¼

Xnp

i¼1

bi
lgiðxjÞ j ¼ 1; . . . ;np l ¼ 1; . . . ; k; ð10Þ

where bi
l are unknown coefficients and giðxjÞ gives the value of the

radial function g with the center point xi at the sample point xj. Dif-
ferent types of radial functions have been proposed in the literature
(see [7,11]). In this paper, inverse multiquadratic function is applied
which has the form:

giðxÞ ¼ x� xi
�� ��2 þ c2
� ��0:5

; ð11Þ

where parameter c is a predefined constant which controls the
smoothness of the radial basis function. It is computationally of
advantage to select this value within the [0–1] range [9]. Fig. 2(a)
and (b) shows two inverse multiquadratic radial basis functions
with different values of c. With reducing the c parameter, the
accuracy of POD-RBF metamodel might increase for nonlinear
systems.

Eq. (10) provides k� np linear equations with k� np unknowns.
This system of equations is solved to find the unknown coefficients.

A
h i

k�np

¼ B½ �k�np
G½ �np�np

) B½ �k�np
¼ A
h i

k�np

G½ ��1
np�np

; ð12Þ

here, matrix G gathers the values of radial functions at the sample
points and matrix B includes the unknown coefficients. Finally,
the equation below is used to find the function value at the obser-
vation point m for an arbitrary input point x:
~u xð Þ½ �m�1 ¼ U

� �
m�k B½ �k�np

gi xð Þ½ �np�1 i ¼ 1; . . . ;np: ð13Þ
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