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a b s t r a c t

The shape optimisation of a cavity is typically performed without considering the previous support,
which may significantly reduce the practical significance of such analyses. Even when an excavation sec-
tion is optimised, failure of the surrounding rock in a tunnel cannot be prevented in the presence of
excessive in situ stress. Thus, a support should be established to protect the stability of a tunnel from
the failure of the surrounding rock. This study examines the optimal shape of the support that satisfies
the optimisation criterion, which minimises the largest tangential stress along the inner edge of the sup-
port, for a specific net tunnel size and support strength. The optimisation process is to solve a series of
forward problems using the conformal mapping method for a plane elasticity complex function. The tan-
gential stress along the inner edge of the support is selected as the objective function, and the coefficients
of the mapping function are considered as the design variables. The minimum value of the objective
function is calculated based on the mixed penalty function method and the optimal support shape that
satisfies the given constraints can be obtained. The stress state of an optimally shaped tunnel support is
significantly improved compared to non-optimal configurations, and the stress concentration along the
inner edge of the support is minimised.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Underground tunnels are widely used in hydropower, traffic,
mining, and military facilities. The stability of a tunnel is closely
related to the shape of the excavation section. The selection of a
reasonable shape can improve the stress state in a tunnel and
the self-supporting ability of the surrounding rock, which is critical
for the maintenance of underground engineering.

An important indicator of an optimal excavation shape is the
stress concentration at the edge of the hole [1]. In mechanics, the
process of determining the optimal excavation shape of the under-
ground cavity can be classified as a hole-shape optimisation prob-
lem. In geometry, this process is classified as a type of inverse
problem, i.e., the optimal excavation shape of a tunnel is deter-
mined based on the premise that the stress satisfies certain
requirements. In this process, the excavation shape is unknown.
Reducing the stress concentration along the edge of the cavity is
an important issue when optimising the shape of a hole in a plane.
This problem is typically solved using the finite element method
[2–4], finite difference method [5,6], or complex function
method [7–11]. The finite element method and finite difference
method have not been extensively used due to their high

computational requirements. The complex function method is an
analytical method that has gained popularity due to its high effi-
ciency in stress analyses of underground tunnel problems. In the
shape optimisation method that employs the complex function
method, some coefficients of the mapping function serve as design
variables. The first step to optimising the shape of the hole is to
select the optimal criterion, as different shapes can be obtained
for different optimisation criteria and different stress distributions
exist along the edge of the hole. Thus, the appropriate optimisation
criterion should minimise the stress concentration at the edge of
the hole.

In 1976, Bjorkman et al. proposed the concept of a harmonic
hole [7]. Optimal shapes for different types of acting loads were
obtained based on the premise that the first invariant of the stress
remains constant regardless of the existence of a hole [7,8]. How-
ever, this criterion is not practical, e.g., for specific types of loads,
the shape of a harmonic hole is not practical or does not exist. In
1981, Dhir proposed the optimisation criterion to minimise the
integral value of the square of the tangential stress along the edge
[9]. The optimisation problem for any type of hole was solved using
the complex function method, which is similar to the approach by
Bjorkman. Cristescu solved a class of optimisation problems with a
rounded rectangle hole [1]. The aforementioned criteria can suffi-
ciently distribute stresses along the edge but may not necessarily
yield the minimum stress concentration.
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In 1996, Lu proposed a new optimisation criterion [10]. In his
opinion, the optimal shape is obtained when the maximum abso-
lute value of tangential stress along the edge of the hole reaches
the minimum stress concentration. Based on this definition, the
maximum absolute value of the tangential stress is the minimum
stress concentration on the edge of the hole obtained by this crite-
rion. The optimal shapes of the tunnel excavation in Ref. [11] were
based on the criterion. The optimisation in Ref. [11] is based on the
premise that no tensile stress appears in the vicinity of the tunnel,
as the compressive strength of rock is significantly higher than its
tensile strength. To ensure that the cavity shape obtained by the
criterion is acceptable in engineering practice, the size and shape
of the tunnel should satisfy certain basic requirements, i.e., the
width and height of the tunnel.

The optimal hole can ensure a minimum or low stress concen-
tration along the boundary. Another question that emerges is
whether there are any other points in the domain for which the
stresses are larger than the stresses along the inner edge. The
answer is no, which can be proven by the maximum principles
for differential equations. The maximum tangential stress must
be located along the boundary [11].

The shape optimisation discussions in Refs. [1–11] are based on
a bare hole, i.e., they do not consider the support of the tunnel.
However, shape optimisation efforts that do not consider tunnel
support lack practical significance because failure of the surround-
ing rock in a tunnel can occur even when the using the optimal
excavation section. Thus, a support should be established to pro-
tect a tunnel from the failure of the surrounding rock. The support
can provide a radial supporting force on the surrounding rock; in
this manner, the stress field in the surrounding rock changes, and
the tangential stress along the inner edge of tunnel can be reduced.

The problem discussed in this paper is how to determine the
optimal shape when the closed concrete support is established.
The following assumptions are made: (1) the surrounding rock
mass and lining are always linear elastic under the action of
in situ stresses and their interactions and (2) because the tunnel
is assumed sufficiently deep, the problem can be simplified as an
infinite domain problem.

2. Theories for determining the optimal support section

2.1. Solution of the forward problem

According to [7–10], the process for obtaining the optimal
shape of a hole requires solving a series of forward problems,
although the optimisation of the shape of a hole is an inverse
geometry problem. From the subsequent analysis, we learn that
the process for determining the optimal shape of the support is
equivalent to the process for solving a series of forward prob-
lems. In solid mechanics, a forward problem involves determin-
ing the stress distributions and law of deformation for an
object by knowing the geometry, material properties, and exter-
nal load.

In this paper, the conformal mapping method of a complex
function is employed to solve the forward problem. The compli-
cated support section (see Fig. 1(a)) in the z plane is transformed
to the annular region (see Fig. 1(b)) in the f plane with an outer
radius and inner radius of 1 and R0, respectively, using the mapping
function z = x(f). All coefficients in the mapping function can be
determined when the shape of the tunnel cross-section and sup-
port thickness R0 are known. That is, if the mapping function is
described as

z ¼ xðfÞ ¼ R fþ
Xn

k¼0

ckf
�k

 !
ð1Þ

where R and Ck (k = 1,. . .,n) can be solved by the method described
in Ref. [11]. When the external loads are applied at infinity (the ini-
tial rock stress) (Fig. 1(a)) and the shapes of the tunnel and lining
are symmetrical about the x axis, R and Ck (k = 1,. . .,n) in Eq. (1)
must be real numbers, which is the case discussed in this paper.
The stress fields in the surrounding rock and support are also sym-
metrical about the x axis; thus, the angle h is only discussed in [0,p].

To solve the forward problem using the conformal transforma-
tion method, a complex function is used to solve three groups of
analytic functions: u1(f), w1(f); u2(f), w2(f), and u3(f), w3(f).

u1(f) and w1(f) are two analytic functions in the outer region of
the unit circle c2 when the tunnel is unsupported. The specific form
of u1(f), w1(f) can be obtained given P, Q, R, R0, and Ck (k = 1,. . .,n).

u2(f) and w2(f) are two analytic functions in the outer region of
unit circle c2 with only the lining supported; their forms can be
expressed as

u2ðfÞ ¼ b0 þ
X1
k¼1

bkf
�k ð2Þ

w2ðfÞ ¼ d0 þ
X1
k¼1

dkf
�k ð3Þ

u3(f) and w3(f) are the analytic functions in the ring-shaped region
that correspond to the lining after the lining is applied; their forms
can be expressed as

u3ðfÞ ¼ p0 þ
X1
k¼1

ekf
�k þ

X1
k¼1

fkf
k ð4Þ

w3ðfÞ ¼ q0 þ
X1
k¼1

gkf
�k þ

X1
k¼1

hkf
k ð5Þ

where b0, d0, p0, q0, bk, dk, ek, fk, gk, and hk in Eqs. (2)–(5) are real con-
stants to be determined. These coefficients can be calculated
according to the stress boundary conditions along L1 and the stress
and displacement continuity conditions along L2; thus, the analyti-
cal expressions of u2(f), w2(f), u3(f) and w3(f) can be obtained.

The stress components for any points in the lining can be solved
according to the following two equations:

rq þ rh ¼ 4Re½u03ðfÞ=x0ðfÞ� ð6Þ

rh�rqþ2isqh¼
2f2

q2

1
x0ðfÞ

xðfÞu
00
3ðfÞx0ðfÞ�u03ðfÞx00ðfÞ

½x0ðfÞ�2
þw03ðfÞ

( )

ð7Þ

where rq, rh, and sqh are the stress components in orthogonal cur-
vilinear coordinates in the z plane.

The stress components for any points in the surrounding rock
mass can be solved according to the following two equations:

rq þ rh ¼ 4Re½u0ðfÞ=x0ðfÞ� ð8Þ

rh � rq þ 2isqh ¼
2f2

q2

1
x0ðfÞ

xðfÞu
0ðfÞx0ðfÞ �u0ðfÞx00ðfÞ

½x0ðfÞ�2
þ w0ðfÞ

( )

ð9Þ

where

uðfÞ ¼ CxðfÞ þu1ðfÞ þu2ðfÞ ð10Þ

wðfÞ ¼ C0xðfÞ þ w1ðfÞ þ w2ðfÞ ð11Þ

where C ¼ Pð1þ kÞ=4, C0 ¼ Pðk� 1Þ, k ¼ Q=P. From this analysis,
the stress components for any point in the surrounding rock and
support can be calculated with the known external load when the
displacement release coefficient g [12] and the mapping function,
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