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a b s t r a c t

This paper introduces a well-balanced second-order finite volume scheme, based on the Q-scheme of Roe,
for simulating granular type flows. The proposed method is applied to solve the incompressible Euler
equations under Savage–Hutter assumptions. The model is derived in a local coordinate system along
a non-erodible bed to take its curvature into account. Moreover, simultaneous appearance of flowing/
static regions is simulated by considering a basal friction resistance which keeps the granular flow from
moving when the angle of granular flow is less than the angle of repose. The proposed scheme preserves
stationary solutions up to second order and deals with different situations of wet/dry transitions by a
modified nonlinear wet/dry treatment. Numerical results indicate the improved properties and robust-
ness of the proposed finite volume structure. In addition, the granular flow properties are estimated with
a computational error of less than 5%. These errors are consistently less than those obtained by using
similar existing finite volume schemes without the proposed modifications, which can result in up to
30% overestimation.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Natural granular flows like landslides, mudslides, snow
avalanches and rockslides are natural hazards that may impose
fatalities and significant economical damages. These flows are
associated with soil erosion and sedimentation into rivers and
valleys [1,18,33], seabed topography change, and soil or surface/
ground water contamination [64]. Moreover, on the shores of a
water body, they may be followed by resulting impulsive waves
and their subsequent dam overtopping [6,7,9–11,14,63,82] or
run-up to coastal areas [36,80] as a secondary hazard. In order to
conduct hazard analysis and protect settled areas, predictions of
the flow thickness and velocity of the slide are needed
[58,62,72]. To this end, a number of numerical studies have been
performed based on different numerical approaches.

Savage and Hutter [70] pioneered the study of rock, snow and
ice avalanches based on shallow water equations under hydro-
static assumption, using two finite difference methods, one of
Lagrangian and the other of Eulerian. Their theory was verified to
be in an excellent agreement with laboratory experiments
[39,46,52,70]. Many of the available numerical models apply the
Savage–Hutter (SH) type considerations to describe the behavior

of granular type flows [30,44,45,58,65,75,81]. This fact also con-
firms the ability and efficiency of these assumptions in recitation
of the granular flow behavior [51]. SH type models are based on
the shallow water equations considering a Coulomb friction term
as the flow/bottom interaction [70]. The constitutive relation of
the granular material is also defined based on the Mohr–Coulomb
criteria; i.e. the normal stresses are related to the longitudinal
stresses by a factor K (the earth pressure coefficient) [70]. In
1991, the SH formulation was transferred to a local coordinate sys-
tem for considering the bed curvature effects [71]. Gray et al. [38]
extended this model to two dimensions. Wieland et al. [81] used a
mixed FVM–FDM (Finite Volume Method–Finite Difference
Method) to discretize the two dimensional SH model. The effects
of the bed erosion were inserted in this model by Pitman et al.
[65] who applied a Godunov type FVM to discretize the model
equations. Denlinger and Iverson [31] extended the three dimen-
sional version of a SH type model using Harten, Lax and Van Leer
contact (HLLC) finite volume scheme. More studies have been
performed on behavior of granular type flows based on different
rheologies and governing equations using FDM [2,42,49,62,75],
FVM [23,32,53,58,61,83], FEM (Finite Element Method)
[4,27,28,35], SPH (Smoothed Particle Hydrodynamics) [59], or a
combination of these schemes [3,81].

A comprehensive review of these studies is summarized in
Table 1. This table shows the previous numerical models including
their governing equations, considered rheology, numerical
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approaches and numerical schemes. Based on this review, FVM and
FEM have been more popular than FDM because of using the inte-
gral form of conservation laws which is closer to the physics
[55,73]. FVM has also the advantage of preserving conservation
of mass and momentum in multidimensional physical systems like
granular avalanches where rapid transitions between flowing and
static states are common [55]. The new approach of SPH, which
has been lately used by many researchers, e.g. [5,8,12,13,59], is
not efficient in simulating the situations where flow encounters
unexpected corners or constrictions [30].

The SH type formulations are applied in the present model to
describe the behavior of the granular flow. The present SH type
model has two special properties. It takes bed curvature effects
and flow dynamic/static regions into account. Based on the previ-
ous studies, bottom curvatures have noticeable effects on the
behavior of granular type flows [20,30,34,42,67]. Lately, two new
SH models have been introduced by Bouchut et al. [20] over a

general bottom. The first model considers small variations of the
bed curvature and the second one is dealing with general bottom
topographies. The present SH type model applied the first hypoth-
esis, i.e. a small variation of the curvature. Accordingly, the model
equations are derived in a local coordinate system along with the
bed to take its curvature into account. This model differs from ori-
ginal SH model through a new curvature term which is required to
obtain the energy inequality and to satisfy the stationary solutions
regarding water at rest [20]. Moreover, in the present model, a
critical stress is defined to stop the granular layer from moving
when its angle is less than the angle of repose [19,34]. This second
property is especially important when the flow is supposed to be
shallow which results in simultaneous existence of the flowing
and the static regions [72].

Effective and robust numerical solution of the system of model
equations described above is the main focus of this paper. A well-
balanced finite volume scheme is proposed which minimize the

Nomenclature

A coefficient matrix
b bottom level
c characteristic wave velocity
D diagonal matrix of eigenvalues
df generalized Roe flux difference
Err computational error
F numerical flux matrix
G source term matrix
G1 source term matrix concerning bed level
G2 source term matrix concerning bed curvature
G3 first h related part of the flux term
G4 second h related part of the flux term
~g gravitational acceleration vector
g gravitational acceleration
H granular flow depth vertical to the bed
H0 characteristic depth
h granular flow depth (h0)/cos2h
h0 granular flow depth
I computational cell
Id identity matrix
J Jacobean of transformation matrix
K earth pressure coefficient
j eigenvector
L characteristic length
m number of computational grids
n number of time steps
ns unit normal vector of flow surface
nb unit normal vector of bottom
P pressure tensor
PXX normal pressure along X
PZZ normal pressure along Z
PZX longitudinal stress along X
PXZ longitudinal stress along Z
Pxx normal pressure along x
Pzz normal pressure along z
Pzx longitudinal stress along x
Pxz longitudinal stress along z
P1 jDj�1

P± projection matrixes 1/2j(Id ± sgn(D))j�1

Q matrix characteristic of a Q scheme
q flow discharge hu
q
^

depth-averaged flow discharge h u
^

q⁄ predicted flow discharge in the first step
r Dt/Dx
S numerical source term matrix

S1 numerical source term matrix related to bed level
S2 numerical source term matrix related to bed curvature
S3 1st numerical h related part of the flux term matrix
S4 2nd numerical h related part of the flux term matrix
T Coulomb friction matrix
T⁄ Coulomb friction matrix of the corrector step
t time
U flow velocity parallel to the bottom
Ub sliding velocity along bottom
U
^

depth-averaged velocity parallel to bottom
u horizontal flow velocity
�u Roe-averaged velocity
V flow velocity perpendicular to the bottom
V0 flow velocity vector (u,v)
v vertical flow velocity
W unknown matrix [hq]
W⁄ predicted values in the first step [hq⁄]
W+ exact solution of nonlinear Riemann problem in the

right edge of wet/dry transition intercell
W� exact solution of nonlinear Riemann problem in the left

edge of wet/dry transition intercell
X local coordinate component along non-erodible bed
~X cartesian coordinate vector (x,z)
~X0 local coordinate vector (X,Z)
x horizontal component of Cartesian coordinate system
Y1 a state value
Y2 a state value
Z local coordinate component perpendicular to the bed
z vertical component of Cartesian coordinate system
q density of granular mass
h local slope angle of the bed
d basal friction angle
d0 angle of repose
/ internal friction angle of granular material
/0 a numerical flux function
e small parameter of dimensional analysis
I Coulomb friction term
rc critical friction resistance of bottom
k eigenvalue
Dx computational cell size
Dt computational time step
scrit critical longitudinal stress of the bottom
r gradient vector (@/@x, @/@z)
c a small parameter 2 (0, 1)
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