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a b s t r a c t

A low-order single-point quadrature finite element suitable of dynamic 3D analysis of saturated soils is
presented. The new element uses a u-p formulation to consider the interaction of the pore fluid and solid
skeleton. An hourglass stabilization scheme facilitates single-point integration for the solid phase terms,
and non-residual pressure field stabilization is used to facilitate equal-order interpolation for the two
phases and improve element behavior in the incompressible–impermeable limit. Several numerical
examples are presented to verify the new element formulation and demonstrate its response in a geo-
technical application.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Three-dimensional numerical analysis techniques represent an
valuable tool for increasing the understanding of the behavior
complex geotechnical systems. As noted by Elgamal et al. [1], the
advances in software and hardware and developments in numeri-
cal simulation tools, such as constitutive models, that have taken
place over the last 10–15 years have resulted in increased viability
for 3D simulations of saturated soils and other geotechnical prob-
lems. Three-dimensional analysis is particularly attractive for the
study of problems that possess inherent three-dimensionality,
such as the analysis of piles in liquefied and laterally spreading
soils [e.g., 2–4], the assessment of the effects of simultaneous hor-
izontal accelerations in two directions, the analysis of differential
settlements due to liquefaction [5], and the study of 3D slopes sub-
ject to seismic excitation [6]. Though the viability of such studies
has increased, these analyses remain computationally intensive,
and any increased efficiency that can be gained is beneficial.

The current paper proposes a new low-order eight-node hexahe-
dral element with single-point quadrature and a u-p formulation for
the consideration of saturated soils subject to dynamic loadings.
Hourglass stabilized reduced integration [7–10] is used to
control the spurious deformation modes associated with
under-integration, and an enhanced assumed strain field [11,12]
is incorporated into the stabilization terms to address volumetric

and shear locking. The stabilization terms for the solid phase are
evaluated using a unique analytical pre-integration technique to
eliminate the need for numerical integration and further increase
the efficiency of the formulation. Linear interpolation functions
are used for the displacement and pressure fields, therefore, the ele-
ment does not inherently satisfy the inf-sup condition [13,14], and a
non-residual based stabilization scheme, modeled after the work of
Huang et al. [15,16], is implemented to improve element perfor-
mance in the limiting case of an incompressible pore fluid and an
impermeable mixture. The general concepts used to develop this
new element correspond with those introduced for an efficient
plane strain u-p element formulation previously developed by the
authors [17]. The implementation of these schemes for a 3D ele-
ment results in certain complexities not encountered in plane
strain, and these differences are highlighted throughout the
discussion.

The proposed element formulation, H1-P1ssp, results in a
stable, accurate, and computationally efficient element suitable
for three-dimensional dynamic analysis of saturated soils. The
solid and fluid phase formulations for this new element are
discussed in separate sections following a brief introduction to
the general mixed element basis. Details regarding the pre-integra-
tion approach for evaluation of the solid phase stabilization terms
are provided in the appendices that follow the primary discussion.
Several numerical examples are provided to verify the implemen-
tation of the element, compare the accuracy of the H1-P1ssp
element to corresponding results for higher-order elements, and
to demonstrate its use in a complex geotechnical application.
Though current computational resources have increased the viabil-
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ity of higher-order elements in 3D analyses, the new element
formulation presented here provides a computationally efficient
alternative to the common H2-P1 (20 or 27 node) element for most
practical purposes. Given a limited level of computational
resources, the H1-P1ssp element can enable the analysis of larger
and/or more refined problems, can reduce execution times for
simpler validation and proof-of-concept analyses, and can enable
the completion of larger parameter studies than a corresponding
higher-order formulation.

2. General mixed element formulation

Elements developed for modeling saturated porous media, e.g.,
[18–21], are typically derived from mixed formulations that con-
sider the coupled response of distinct fluid and solid phases, often
within the framework of the early work of Biot [22–24]. The
H1-P1ssp element uses the u-p formulation [21] to create such a
coupled system, as this approach is particularly attractive in the
context of an efficient solution and the assumptions associated
with its use are valid in most soil dynamics problems.

The u-p element formulation describes the coupled system in
terms of two variables, the displacement of the solid phase, u,
and the pressure in the pore fluid, p, and is derived from two cou-
pled equations, the equation of motion for the mixture neglecting
the acceleration of the fluid,

$ � r0 � p1ð Þ þ qg� q€u ¼ 0 ð1Þ

and the combined equation of motion for the fluid phase and mass
balance for the mixture,

tr _eþ n
Kf

_pþ $ � k �$pþ qf g
� �h i

¼ 0 ð2Þ

where u is the displacement of the solid phase, r0 is the effective
stress, 1 is the second-order identity tensor, q is the mixture mass
density, tr _e is the volumetric strain rate in the solid phase, n is
the porosity, Kf and qf are the pore fluid bulk modulus and mass
density, k is the permeability tensor, and g is a gravitational accel-
eration vector such that qg and qf g are a body force vectors for the
solid and fluid phases, respectively. In this and all subsequent dis-
cussion, compression is taken as negative.

Discretized expressions for this coupled system are obtained via
the standard Galerkin technique using the approximations u � Nud
and p � Npp, where Nu and Np are arrays of interpolation functions
for displacement and pressure, respectively, and d and p are vec-
tors of nodal displacements and pore pressures. The resulting
expressions are as follows:
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where B is the standard kinematic matrix for the solid phase, t is a
surface traction for the solid phase, q is a surface flux for the fluid

phase, and 1 ¼ ½1;1;1; 0;0;0�T . Definitions for the remaining terms
in Eqs. (3)–(10) are provided in subsequent sections that discuss
the evaluation of the various solid phase and fluid phase constitu-
ents for the H1-P1ssp element. Voight notation is adopted in Eqs.
(3)–(10) and in all subsequent development.

3. Formulation for the solid phase

The framework used to evaluate the solid phase terms of Eqs.
(3) and (4) is similar to that of the Q1-P1ssp element [17], how-
ever, the differences between the 3D and plane strain formulations
are significant enough to warrant a full discussion here, even at the
expense of some repetition. The primary differences between the
two formulations are noted at applicable points in the following
discussion.

3.1. Element kinematics

The solid phase kinematic equations for the H1-P1ssp element
are developed from the displacement field of Belytschko and
Bachrach [25] in order to facilitate a split into two portions: (1) a
non-constant (stabilizing) portion associated with the hourglass
modes for the element solid phase and (2) a constant portion
associated with the remaining deformation modes. The chosen
displacement field has the form

u ¼ ða0i þ a1ixþ a2iyþ a3izþ c1ihng þ c2ihfg þ c3ihfn

þ c4ihngfÞei ð11Þ

where a1i; a2i; a3i; c1i; c2i; c3i, and c4i are scalar coefficients, ei are
unit vectors, x; y, and z are global coordinates, and

hab ¼ ab; a; b ¼ n; g; f ð12Þ
hngf ¼ ngf ð13Þ

are the local coordinate products. Using this form, the nodal
displacements,

dx ¼ ½u1;u2;u3;u4;u5;u6;u7;u8�T ð14Þ
dy ¼ ½v1;v2;v3;v4;v5;v6;v7;v8�T ð15Þ
dz ¼ ½w1;w2;w3;w4;w5;w6;w7;w8�T ð16Þ

can be expressed as

di ¼ a0irþ a1ixþ a2iy þ a3izþ c1ihng þ c2ihfg þ c3ihfn

þ c4ihngf ð17Þ

where

r ¼ ½1;1;1;1;1;1;1;1�T ð18Þ
x ¼ ½x1; x2; x3; x4; x5; x6; x7; x8�T ð19Þ
y ¼ ½y1; y2; y3; y4; y5; y6; y7; y8�

T ð20Þ
z ¼ ½z1; z2; z3; z4; z5; z6; z7; z8�T ð21Þ
hng ¼ hngðn;g; fÞ ¼ ½1;�1;1;�1;1;�1;1;�1�T ð22Þ
hfg ¼ hfgðn;g; fÞ ¼ ½1;1;�1;�1;�1;�1;1;1�T ð23Þ
hfn ¼ hfnðn;g; fÞ ¼ ½1;�1;�1;1;�1;1;1;�1�T ð24Þ
hngf ¼ hngfðn;g; fÞ ¼ ½�1;1;�1;1;1;�1;1;�1�T ð25Þ

and

n ¼ ½�1;1;1;�1;�1;1;1;�1�T ð26Þ
g ¼ ½�1;�1;1;1;�1;�1;1;1�T ð27Þ
f ¼ ½�1;�1;�1;�1;1;1;1;1�T ð28Þ
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