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a b s t r a c t

The dynamic response of a viscoelastic bearing pile embedded in multilayered soil is theoretically inves-
tigated considering the transverse inertia effect of the pile. The soil layers surrounding the pile are mod-
eled as a set of viscoelastic continuous media in three-dimensional axisymmetric space, and a simplified
model, i.e., the distributed Voigt model, is proposed to simulate the dynamic interactions of the adjacent
soil layers. Meanwhile, the pile is assumed to be a Rayleigh–Love rod with material damping and can be
divided into several pile segments allowing for soil layers and pile defects. Both the vertical and radial
displacement continuity conditions at the soil–pile interface are taken into account. The potential func-
tion decomposition method and the variable separation method are introduced to solve the governing
equations of soil vibration in which the vertical and radial displacement components are coupled. On this
basis, the impedance function at the top of the pile segment is derived by invoking the force and displace-
ment continuity conditions at the soil–pile interface as well as the bottom of pile segment. The imped-
ance function at the pile head is then obtained by means of the impedance function transfer method.
By means of the inverse Fourier transform and convolution theorem, the velocity response in the time
domain can also be obtained. The reasonableness of the assumptions of the soil-layer interactions have
been verified by comparing the present solutions with two published solutions and a set of well-
documented measured pile test data. A parametric analysis is then conducted using the present solutions
to investigate the influence of the transverse inertia effect on the dynamic response of an intact pile and a
defective pile for different design parameters of the soil–pile system.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Pile vibration theory provides the theoretical basis for dynamic
foundation design, earthquake-resistance design and various
methods of dynamic pile testing. Many investigations have been
devoted to studying the dynamic behavior of piles, and many types
of dynamic interaction models have been proposed. The Kelvin–
Vogit model, for instance, was used to simulate the dynamic inter-
action at the interface of soil–pile by Randolph and Deeks [1],
Nogami et al. [2], Wang et al. [3], Michaelides et al. [4], and Ding
et al. [5]. This model cannot consider the wave effect of the soil
adjacent to the pile. To allow for the frequency-dependency of
the dynamic interaction between the embedded footings and soil,

Novak and Beredugo [6] presented a generalized Winkler model by
assuming the surrounding soil to be a set of independent, infinites-
imally thin horizontal layers that extend to infinity, which is well-
known as the plane strain model. It was extended to study more
cases on the dynamic interaction of soil–pile systems by Novak
et al. [7,8], Nogami and Konagai [9], Lee et al. [10] and Rajapakse
and Shah [11] among others. The above models were combined
to analyze the nonlinear behavior of the surrounding soil by EI
Naggar and Novak [12,13]. By using the vibration theory of
three-dimensional axisymmetric continuum and ignoring the
radial displacement of soil, Nogami and Novak [14] developed an
approach to investigate a vertically vibrating pile embedded in
the soil layer with hysteretic damping. Soon afterward, more com-
prehensive solutions were derived by Senjuntichai et al. [15], Que
et al. [16,17], in which the vertical axisymmetric motion of satu-
rated porous medium and viscoelastic medium were considered,
respectively. In the above mentioned research, the radial displace-
ment of the soil–pile interface was neglected or assumed to be
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zero; thus, the soil–pile vibration in the radial direction was
uncoupled, although the three-dimensional wave effect of soil
was still considered.

On the other hand, with the increase in bearing capacity of pile
foundations required in the design of modern superstructures, the
pile diameter is getting larger than before. For the large diameter
pile, the wave dispersion effect has been proven to be an important
reason for the differences between the field test results and the
one-dimension solutions from numerical analyses [18–20]. To
approximately allow for the 3D effect of wave propagation in a
round rod, the Rayleigh–Love bar motion equation was introduced,
where the effects of Rayleigh and Love waves are combined, in
which the transverse inertia effect was deemed as a reflection of
the 3D wave effect. This method has previously been applied to
the vibration analysis of piles as follows: Li et al. [21] assumed
the pile to be a Rayleigh–Love bar to study the vertical vibration
of a large diameter rock-socketed pile embedded in homogeneous
saturated soil; Wu et al. [22] conducted a study of dynamic longi-
tudinal impedance of tapered piles by considering the transverse
inertial effect of tapered pile; Yang and Tang [23] also applied this
approach to analyze the dynamic response of piles in combination
with the Novak layer method. However, several limiting assump-
tions were adopted in the above works, including either homoge-
neous soil, a fixed pile tip or the specified displacement of soil
layer at the soil–pile interface, which was set to zero.

In light of this, this paper proposed an improved solution to
investigate the longitudinal vibration of a viscoelastic bearing pile
embedded in multilayered soil considering the transverse inertia
effect of pile. Both the vertical and radial displacement continuity
conditions at the soil–pile interface are taken into account here. A
parametric analysis is further conducted to study the influence of
the transverse inertia effect on the dynamic response of an intact
pile and a defective pile for different design parameters of soil–pile
system.

2. Mathematical model construction

2.1. Calculation model

The longitudinal vibration of a viscoelastic pile embedded in
layered soil is studied, wherein a dynamic interaction model of
the soil–pile system is constructed, as shown in Fig. 1. There are

several layers of soil surrounding the pile, which are numbered
1 � n from the top to the bottom. According to the coordinate sys-
tem shown in Fig. 1, hk and H represent the top positions of the kth
soil layer and the pile length, respectively. The dynamic interac-
tions at the pile tip are represented by uniform Voigt components,
where kb and db denote the Voigt model parameters of the interface
between the bearing stratum and the pile tip. Likewise, the com-
plex stiffness of the soil-layer interactions is assumed to be uni-
formly distributed in the radial direction, and it is simplified as a
series of Voigt models, as shown in Fig. 1. Here, kk

a and dk
a represent

the stiffness and the damping that constitute the complex stiffness
at the top of layer k, respectively; kk

b and dk
b represent the stiffness

and the damping that constitute the complex stiffness at the bot-
tom of layer k, respectively. The accuracy and parameter value of
this model will be illustrated in a later section.

2.2. Assumptions

(1) The soil surrounding the pile is layer-wise homogeneous,
isotropic and viscoelastic, and the material damping of the
soil layers is assumed to be viscous damping. Both radial
and vertical displacements of the soil are taken into account.

(2) The soil is infinite in the radial direction. There are no nor-
mal and shear stresses on the free top surface of the soil.
The stresses and the vertical and radial displacements at
the soil–pile interface are continuous.

(3) The pile is a viscoelastic Rayleigh–Love rod with a uniform
circular cross-section and has perfect contact with the sur-
rounding soil during the vibration.

(4) The soil–pile system is subjected to small deformations and
strains during the vibration.

2.3. Problem definition

2.3.1. Dynamic governing equations

(1) Dynamic equation of the soil layers: The axisymmetric vibra-
tion in viscoelastic soil layers is taken into account here.
Denoting uzk = uzk(r, z, t), urk = urk(r, z, t) (k = 1,2, . . .,n) to be
the vertical and radial displacement in the kth soil layer,
respectively, the dynamic governing equation of soil motion
can be expressed as

Radial direction:

G1k r2 � 1
r2

� �
urk þ 2G2k

@

@z
xhk ¼ qsk

@2urk

@t2 ð1Þ

Vertical direction:

G1kr2uzk � 2G2k
@

@z
þ 1

r

� �
xhk ¼ qsk

@2uzk

@t2 ð2Þ

In the above equations, G1k ¼ ðkk þ 2lkÞ þ ðk
0
k þ 2l0kÞ @@t ;

G2k ¼ ðkk þ lkÞ þ ðk
0
k þ l0kÞ @@t ;xhk ¼ 1

2
@uzk
@r �

@urk
@z

� �
;r2 ¼ @2

@r2 þ 1
r
@
@r þ @2

@z2 ;

kk ¼ mskEsk
1þmskð Þ 1�2mskð Þ ;lk ¼

Esk
2ð1þmskÞ

; k0k ¼
2m0

sk
1�2m0

sk
l0k; Esk, msk and qsk denote

the dynamic elastic modulus, dynamic Poisson’s ratio and density
of the kth soil layers, respectively; kk and lk represent the lame con-
stants associated with volumetric and shear strain, respectively; k0k
and l0k are the viscosity coefficients associated with kk and lk,
respectively; m0sk represents the transverse ratio of the viscous strain
rate.

(2) Vertical vibration equation of a single pile.
To allow for the impact of the transverse inertia effect, the

vibration problem of the kth pile segment can be described by
the theory of Rayleigh–Love rod as follows:Fig. 1. Dynamic model of the soil–pile system.
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