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a b s t r a c t

A meshless method based on the local Petrov–Galerkin approach is proposed to analyze 3-d axisymmet-
ric problems in porous functionally graded materials. Constitutive equations for porous materials possess
a coupling between mechanical displacements for solid and fluid phases. The work is based on the u–u
formulation and the incognita fields of the coupled analysis in focus are the solid skeleton displacements
and the fluid displacements. Independent spatial discretization is considered for each phase of the model,
rendering a more flexible and efficient methodology. Both displacements are approximated by the
moving least-squares (MLS) scheme. The paper presents in the first time a general meshless method
for the numerical analysis of axisymmetric problems in continuously nonhomogeneous saturated porous
media. Numerical results are given for boreholes in continuously nonhomogeneous porous medium with
prescribed misfit and exponential variation of material parameters in the excavation zone.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Poroelasticity belongs to the continuum mechanics with two or
more phases. The one-dimensional theory of the consolidation of a
water saturated elastic porous geomaterial was first developed by
Terzaghi [1]. Later Biot [2] formulated a theory for multidimen-
sional problems of porous materials saturated by a viscous fluid.
The generalized three-dimensional theory of poroelasticity in
anisotropic porous materials has been developed by Biot [3] too.
Theory of poroelasticity has been successfully applied in the study
of variety of problems in geomechanics, biomechanics, materials
engineering, environmental geomechanics and energy resource
recovery from geological formations [4,5]. The extension to a
nearly saturated poroelastic material has been presented by Aifan-
tis [6] and Wilson and Aifantis [7] for the quasi-static case. The
dynamic extension of Biot’s theory to three phases has been pub-
lished by Vardoulakis and Beskos [8]. A state of the art overview
on the theory of dynamic poroelasticity, its numerical approxima-
tion, and applications may be found in Schanz’ review paper [5].

Since the coupled differential equations are generally difficult
to solve exactly, it appears that numerical approaches have to be
adopted to attain solutions. Analytical methods are restricted to

simple boundary value problems. A nice review is given by Selvad-
urai [9]. Despite the universality and great success of the finite and
boundary element methods in their applicability even to multi-
field problems, there are some restrictions leading to exclusion of
the finite elements with equal order interpolation for pressure
and displacements in poroelastic problems [10–13]. The dynamic
Green’s function of homogeneous poroelastic half-plane has been
derived by Senjuntichai and Rajapakse [14] and later applied to a
vertical vibration of an embedded rigid foundation in a poroelastic
soil [15]. The boundary element method (BEM) has been developed
for transient and time harmonic analysis of dynamic poroelasticity
problems [16]. Later a simple BEM formulation for poroelasticity
via particular integrals has been developed by Banerjee [17]. Time
domain BEM has been applied for axisymmetric quasi-static
poroelasticity [18]. Dynamic Green’s functions for poroelastic and
layered poroelastic half-spaces have been derived in [19] and
[20]. In general, material coefficients in poroelasticity are aniso-
tropic [21] and spatially variable.

Axisymmetric problems have received considerable attention in
the past due to their close relevance to geotechnical and rock
testing methods such as uni-axial and tri-axial compression tests,
double-punch tests and point load strength tests. In addition, stress
analysis of cylinders is also relevant to applications involving bio-
medical and mechanical engineering. A cylindrical borehole drilled
in a soil/rock medium is commonly found in the petroleum indus-
try. Stability of borehole is important because it is the one of major

http://dx.doi.org/10.1016/j.compgeo.2014.07.006
0266-352X/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: sladek@savba.sk (J. Sladek).

Computers and Geotechnics 62 (2014) 100–109

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier .com/ locate/compgeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compgeo.2014.07.006&domain=pdf
http://dx.doi.org/10.1016/j.compgeo.2014.07.006
mailto:sladek@savba.sk
http://dx.doi.org/10.1016/j.compgeo.2014.07.006
http://www.sciencedirect.com/science/journal/0266352X
http://www.elsevier.com/locate/compgeo


problems in oil and gas industries. In the past, the classical theory
of elasticity has been used extensively to analyze various elasto-
static and elastodynamic problems involving cylinders and bore-
holes [22]. However, geological materials are normally two-phase
materials consisting of a solid skeleton with voids filled with
water. Such materials are commonly known as poroelastic materi-
als and widely considered as much more realistic representation
for natural soils and rocks than ideal elastic materials [23]. The
governing equations for a poroelastic material undergoing axisym-
metric deformations are given by Rice and Cleary [24]. A misfit of
the radial displacement with respect to the borehole diameter is
considered here. A cylindrical borehole in a poroelastic medium
with consideration of excavation disturbed zone is considered.
Shear modulus and permeability coefficient are assumed to be con-
tinuously non-homogenous in radial direction for the disturbed
zone. Vrettos [25] derived Green’s functions for vertical point load
on a non-homogeneous medium with an exponential variation of
the shear modulus decreasing with depth.

In spite of the great success of domain and boundary discretiza-
tion methods for the solution of general boundary value problems,
there is still a growing interest in the development of new
advanced computational methods. The finite element method
(FEM) can be successfully applied to problems with an arbitrary
variation of material properties by using special graded elements.
In commercial computer codes, however, material properties are
considered to be uniform within each element. In recent years,
meshless formulations are becoming popular due to their high
adaptability and easier preparation of input and output data in
numerical analyses. The moving least squares (MLS) approxima-
tion is generally considered as one of many schemes to interpolate
discrete data with a reasonable accuracy. The order of continuity of
the MLS approximation is given by the minimum between the
orders of continuity of the basis functions and that of the weight
function. Thus, continuity can be tuned to a desired value. In
conventional discretization methods, however, the interpolation
functions usually result in a discontinuity in the secondary fields
(gradients of primary fields) on the interfaces of elements. For
modeling coupled fields the approach based on piecewise continu-
ous elements can bring some inaccuracies. Therefore, a model
which is based on C1-continuity, such as the meshless method, is
expected to be more accurate than conventional discretization
techniques. A drawback of meshless methods is higher CPU time
compared to regular FEM. However, this drawback can be over-
come. Recently, the authors [48–51] have developed a modified
MLPG formulation, where Taylor series expansions and analytical
integrations over the local sub-domains in two-dimensional elas-
todynamics are applied.

A variety of meshless methods can be derived from a weak-form
formulation either on the global domain or on a set of local subdo-
mains. In the global formulation, background cells are required for
the integration of the weak-form. In methods based on local weak-
form formulation, on the other hand, no background cells are
required. The meshless local Petrov–Galerkin (MLPG) method is a
fundamental base for the derivation of many meshless formula-
tions, since the trial and test functions can be chosen from different
functional spaces [26–29]. The MLPG method with a Heaviside step
function as the test function [29] has been successfully applied to
solve various 3-d axisymmetric problems [30–32]. The MLPG has
been successfully applied to porous problems [33,52,53]. Many
meshless formulations in poroelastic media have been applied to
analyze consolidation problems [54–57]. The MLPG has been
applied also to dynamic poroelastic problems, however up to day
only as two-dimensional analyses [33,52]. In all early published
papers based on the meshless formulations homogeneous material
properties are considered. A meshfree algorithm based on the
Galerkin approach is proposed for the fully coupled analysis of flow

and deformation in unsaturated poroelastic media by Khoshghalb
and Khalili [34]. Temporal discretization is achieved there using a
three-point approximation technique with second order accuracy.
Sheu [35] analyzed the prediction of probabilistic settlements with
the uncertainty in the spatial variability of Young’s modulus to
illustrate the preliminary development of a spectral stochastic
meshless local Petrov–Galerkin (SSMLPG) method. Generalized
polynomial chaos expansions of Young’s moduli and a two-
dimensional meshfree weak–strong formulation in elasticity are
combined to derive the SSMLPG formulation.

In the present paper, the MLPG is developed for an axisymmet-
ric 3D boundary value problem in a porous material with continu-
ously varying material properties. It is the first meshless
application to such a problem. Because of the axial symmetry,
the analyzed domain is the cross-section of the considered body
with the plane involving the axis of symmetry. Both governing
equations for the balance of momentum in solid and fluid phases
are satisfied in a weak form on small fictitious subdomains in the
present paper. Nodal points are introduced and spread on the ana-
lyzed domain and each node is surrounded by a small circle for
simplicity; but in general, it can be of an arbitrary shape. The spa-
tial variations of the displacements in solid and fluid phases are
approximated by the moving least-squares scheme [36,37]. After
performing the spatial integrations, one obtains a system of ordin-
ary differential equations (ODE) for temporal variations of certain
nodal unknowns. The backward difference method is applied for
the approximation of ‘‘velocities’’ and the Houbolt method [38] is
applied for the accelerations in the ODE. The influence of the mate-
rial gradation on displacements and stresses in porous medium
around the borehole is investigated.

2. Local boundary integral equations

In Biot’s theory a fully saturated material is considered, i.e., an
elastic skeleton with a statistical distribution of interconnected
pores is modeled. The porosity is denoted by

/ ¼ Vf

V
ð1Þ

where V f is the volume of the interconnected pores contained in a
sample of bulk volume V. The sealed pores are considered as part
of the solid. Full saturation is assumed leading to V = V f + V s with
Vs the volume of the solid. There are several possibilities to write
governing equations for porous materials:

(i) To use the solid displacement us
i and the fluid displacement

uf
i with six (four) unknowns in 3-d (2-d) problems [39].

(ii) Alternatively the solid displacement us
i and the seepage dis-

placement wi (wi ¼ /ðuf
i � us

i Þ) with also six (four) unknowns
in 3-d (2-d) can be used [40]. Beside the seepage displace-
ment also sometimes the seepage velocity, i.e., the time
derivative of wi is applied.

(iii) A combination of the pore pressure p and the solid
displacement us

i with four (three) unknowns in 3-d (2-d)
can be established. As shown by Bonnet [41], this choice is
sufficient.

In the present paper we use the first approach based on solid
and fluid displacements. If the constitutive equations are formu-
lated for the elastic solid and the interstitial fluid, a partial stress
formulation is obtained [2,3]

rs
ij ¼ 2Ges

ij þ K � 2
3

Gþ Q 2

R

 !
es

kkdij þ Qef
kkdij; ð2Þ

rf ¼ �/p ¼ Qes
kk þ Ref

kk; ð3Þ
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