
Technical Communication

Semi-analytical solution to one-dimensional consolidation
for viscoelastic unsaturated soils

Aifang Qin, De’an Sun ⇑, Jiulong Zhang
Department of Civil Engineering, Shanghai University, Shanghai 200072, China

a r t i c l e i n f o

Article history:
Received 22 January 2014
Received in revised form 27 June 2014
Accepted 28 June 2014
Available online 2 August 2014

Keywords:
Unsaturated soil
Viscoelastic body
Consolidation
Semi-analytical solution
Excess pore-air pressure
Excess pore-water pressure

a b s t r a c t

This paper presents a semi-analytical solution to one-dimensional consolidation of viscoelastic unsatu-
rated soils with a finite thickness under oedometric conditions and subjected to a sudden loading. The
solution is obtained by using Lee’s correspondence principle based on the semi-analytical solution to
one-dimensional consolidation of elastic unsaturated soils. The boundary contains the top surface perme-
able to water and air and the bottom impermeable to water and air. A typical example is given to show
the evolution of excess pore-air and pore-water pressures as well as the total degree of consolidation of
the soil layer with time for different ratios of air–water permeability coefficient, elastic modulus and vis-
coelastic coefficient. The one-dimensional consolidation behavior of viscoelastic unsaturated soil is dis-
cussed according to the semi-analytical solution. These results contribute to a better understanding of
the consolidation behavior of viscoelastic unsaturated soils.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Research on the consolidation behavior of unsaturated soils
began in the 1960s. In the past five decades, a considerable amount
of research on the consolidation theory for unsaturated soils has
been conducted with many research results being accumulated,
and great progress being made. Typical ones are due to Scott [1],
Blight [2], Barden [3] and Fredlund and Hasan [4]. Among them,
the consolidation theory of Fredlund and Hasan is the most popu-
lar. However, the above mentioned research works focus on elastic
unsaturated soils, whereas in practice real soils exhibit more com-
plex rheological properties (time-dependent creep for example)
which has important impacts on engineering designs. The visco-
elastic model was first introduced to consolidation theory for sat-
urated soils by Tan [5] in the 1950s. Research works on this topic
were then developed and some progress were made in subsequent
years by Chen [6], Gibson and Lo [7], Lo [8], Xie and Liu [9], Leo and
Xie [10], among others. However, up to this date, related research
works on the consolidation theory of viscoelastic unsaturated soils
are scarce.

Qin et al. [11]obtained an analytical solution of one-dimensional
consolidation based on the formulation of Fredlund and Hasan [4]
for linearly elastic unsaturated soils, subjected to a vertical step
loading and zero radial strain in the horizontal directions (i.e.

oedometric conditions). In their work, the top boundary surface is
permeable while that of the bottom is impermeable to water and
air. Shan et al. [12] provided exact solutions using both homoge-
neous and nonhomogeneous boundary conditions. Zhou et al. [13]
presented a simple analytical solution to Fredlund and Hasan’s
one-dimensional consolidation theory for unsaturated soils. Ho
et al. [14] introduced an exact analytical solution for governing
equations of Fredlund and Hasan’s one-dimensional consolidation
in unsaturated soil stratum using the techniques of eigenfunction
expansion and Laplace transformation. All the above solutions are
for linearly elastic unsaturated soils. When the solution for an
elastic body being known, the solution to the same problem for a
viscoelastic body can be obtained by Lee’s correspondence
principle [15].

In this paper, based on the solution to one-dimensional consol-
idation of elastic unsaturated soils in [11], Lee’s correspondence
principle is adopted to study one-dimensional consolidation of vis-
coelastic unsaturated soils.

2. Constitutive equation

An unsaturated soil layer is considered with infinite horizontal
extent and a finite thickness H subjected to a vertical step loading
q. Radial strains are null in the horizontal directions (i.e. oedomet-
ric conditions). A representative soil element of volume
dV = 1 � 1 � dz with one-dimensional water and air flow in the z
direction is shown in Fig. 1.
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In this paper, the Merchant viscoelastic model [8] is adopted as
the constitutive model for unsaturated soils, which consists of an
elastic body L0 in series with a Kelvin body. The latter is composed
of two bodies in paralleled: an elastic body L1 and a viscous body N,
as shown in Fig. 2. A few steps of computations show that the Mer-
chant model is described by the following constitutive equation:

rþ g
E0 þ E1

dr
dt
¼ E0E1

E0 þ E1
eþ gE0

E0 þ E1

de
dt

ð1Þ

In the above equation r is the stress and e is the strain, E0 is the stiff-
ness coefficient of the elastic body L0; E1 and g are respectively the
stiffness and viscosity coefficients of the elastic and viscous compo-
nents of the Kelvin body.

Applying the Laplace transform to Eq. (1) we obtain:

VðsÞ �
eeðsÞ
~rðsÞ ¼

1
E0
þ 1

E1 þ gs
ð2Þ

where s is the conjugate variable of t in the Laplace transform.

3. Derivation of semi-analytical solution

3.1. Governing equation for water phase

The permeability of water in the unsaturated soil is assumed
constant during consolidation for a preliminary study, which is a
simplifying assumption that may influence the results, but needed
to be adopted to obtain the solution for the exiting complex differ-
ential equations. Based on the continuity equation and Darcy’s law
applied to the pore water, we have [4]

@ Vw
V0

� �
@t

¼ kw

cw

@2uw

@z2 ð3Þ

where V0 is the initial soil volume; Vw is the volume of water phase;
kw is the coefficient of water permeability in unsaturated soils; uw is
the excess pore-water pressure due to external load and cw is the
unit weight of water phase.

The Laplace transform applied to Eq. (3) leads to:

s
eV w

V0

 !
¼ kw

cw

@2~uw

@z2 ð4Þ

Volume change of the water phase in unsaturated soils is described
by the following equation due to Fredlund and Hasan [4]:

@ Vw
V0

� �
@t

¼ mw
1k
@ðr� uaÞ

@t
þmw

2
@ðua � uwÞ

@t
ð5Þ

The coefficients mw
1k and mw

2 account for changes in water volume
due respectively to changes in net normal stress r � ua and suction
ua � uw; ua is the excess pore-air pressure and r is the total stress.
The subscript k stands for K0 loading condition without zero lateral
strain.

Considering that the total stress r is constant during consolida-
tion, applying the Laplace transform to Eq. (5) gives the following
equation on change of water volume in the transformed domain:

s
eV w

V0

 !
¼ ~mw

1k s �~uað Þ � ð�u0
aÞ

� �
þ ~mw

2 s ~ua � ~uwð Þ � ðu0
a � u0

wÞ
� �

ð6Þ

where u0
a and u0

w are the initial excess pore-air and pore-water pres-
sures, and

~mw
1k ¼ �

1
Ew

01k

� 1
Ew

1k þ gw
1ks

ð7Þ

~mw
2 ¼ �

1
Ew

02
� 1

Ew
2 þ gw

2 s
ð8Þ

in which, Ew
01k and Ew

1k are the stiffness coefficients accounting for
changes in net normal stress r � ua, respectively for the elastic body
L0 and the Kelvin body. Stiffness coefficients Ew

02 and Ew
2 are the corre-

sponding stiffness coefficients accounting for suction changes.
Finally, gw

1k and gw
2 are the viscous coefficients of the Kelvin body

accounting respectively for changes in net normal stress and suction.
Substituting Eq. (4) into Eq. (6) gives

~mw
1k sð�~uaÞ þ u0

a

� �
þ ~mw

2 sð~ua � ~uwÞ � ðu0
a � u0

wÞ
� �

¼ kw

cw

@2~uw

@z2 ð9Þ

Rearranging Eq. (9) leads to the following equation:

s~uw ¼ �eCw
v
@2~uw

@z2 þ seCw~ua þ u0
a
eCw þ u0

w ð10Þ

where

eCw ¼
~mw

1k � ~mw
2

~mw
2

¼ 1� ~mw
2 = ~mw

1k
~mw

2 = ~mw
1k

ð11Þ

eCw
v ¼

kw

cw ~mw
2

ð12Þ

3.2. Governing equation for air phase

The coefficient of air permeability ka is assumed constant dur-
ing consolidation for a preliminary study, which is a simplifying
assumption that may influence the results, but needed to be
adopted to obtain the solution for the exiting complex differential
equations, and the pore-air behaves is assumed to an ideal gas, we
have [4]

@ Va
V0

� �
@t

¼ kaRT
g�uaM

@2ua

@z2 �
nð1� SrÞ

�ua

@ua

@t
ð13Þ

where Va is the volume of air phase. R is the universal gas constant,
8.314 J/(mol K). T is the absolute temperature, K. M is the average
molecular mass of air phase, kg/mol; g is the gravitationalFig. 2. The Merchant model.

Fig. 1. One unsaturated soil layer with a free boundary at the top surface and an
impermeable boundary at the bottom.
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