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a b s t r a c t

Unsaturated flow problems in porous media often described by Richards’ equation are of great impor-
tance in many engineering applications. In this contribution, we propose a new numerical flow approach
based on isogeometric analysis (IGA) for modeling the unsaturated flow problems. The non-uniform
rational B-spline (NURBS) basis is utilized for spatial discretization whereas the stable implicit backward
Euler method for time discretization. The nonlinear Richards’ equation is iteratively solved with the aid of
the Newton–Raphson scheme. Owing to some desirable features of an efficient numerical flow approach,
major advantages of the present formulation involve: (a) numerical oscillation at the wetting front can be
avoided or facilitated, simply by using either an h-refinement or a lumped mass matrix technique; (b)
higher-order exactness can be obtained due to the nature of the IGA features; (c) the approach is straight-
forward to implement and it does not need any transformation, e.g., Kirchhoff transformation or filter
algorithm; and (d) in contrast to the Picard iteration scheme, which forms linear convergences, the
proposed approach can however yield quadratic convergences by using the Newton–Raphson method
for solving resultant nonlinear equations. Numerical model validation is analyzed by solving a
three-dimensional unsaturated flow problem in soil, and its derived results are verified against analytical
solutions. Numerical applications are then studied by considering three extensive examples with simple
and complex configurations to further show the accuracy and applicability of the present IGA.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Landslides induced by rainfall, dike failure caused by the
infiltration of rain and flood, and contaminant transportation into
soil, etc. are relevant to the flow in unsaturated porous media,
and the flow is often governed by Richard’s equation [1], which
is the combination of Darcy’s law and the continuity equation.

Due to the strong non-linearity of the Richard’s equation, only
few unsaturated flow problems with simple initial and boundary
conditions can be analytically solved [2–8]. For general unsatu-
rated flow problems, numerical methods are much more effective.
In the past decades several numerical models have been developed
to solve unsaturated flow problems. In general, the finite difference
method [9–11], the finite element method [12–18], the flux-
concentration [19,20], the finite volume method [21,22] and the
meshless method [23], etc. are used for spatial discretization while

the finite difference method for time discretization, and the
discretized nonlinear Richards’ equation is then solved iteratively.
Recently, a computational model of unsaturated flow in porous
media based on a phase-field formulation is presented in [24] by
extending the Richard’s equation to predict the instability and
capture the key features of gravity fingering quantitatively.

In spite of the success and the great variety of existing numer-
ical methods for the solution of the unsaturated flow problems,
there is still a growing interest in the development of new
advanced methods. In recent years the isogeometric analysis
(IGA) [25] is becoming popular due to a number of advanced fea-
tures including the exactness of reproducing the geometry,
higher-order continuity, simple mesh refinement, and avoiding
the traditional mesh generation procedure. The IGA has been
successfully applied to implement many engineering problems
including high-performance [26], plates [27–29], incompressibility
[30], electromagnetics [31] and phase fields [32,33], etc. Recently,
the IGA is also developed for poroelasticity, using Biot’s model
for fully saturated condition [34].

The objective of the present work is to propose a new numerical
flow approach in the framework of the IGA for modeling the
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unsaturated flow problems. The present formulation utilizes the
non-uniform rational B-spline (NURBS) basis for spatial discretiza-
tion whereas the stable implicit backward Euler method for time
discretization. We apply the Newton–Raphson technique to itera-
tively solve the nonlinear Richards’ equation. The key advantages
of the developed method can be highlighted as follows:

(a) Numerical oscillation at the wetting front can be avoided or
facilitated by using h-refinement or lumped mass matrix
techniques.

(b) Higher-order exactness can be obtained because of the
nature features of the IGA method.

(c) The numerical implementation of the proposed approach is
straightforward and it avoids Kirchhoff transformation or
filter algorithm.

(d) The quadratic convergence can be obtained instead of the lin-
ear one as some existing references using the Picard iteration.

We verify the accuracy of the proposed model through a
numerical model validation by dealing with a three-dimensional
unsaturated flow problem in soil, in which L2 norm error is
explored. The accuracy and applicability of the method is further
illustrated through three other numerical examples of unsaturated
flow problems. We respectively analyze the infiltration into New
Mexico soil [11], a nonlinear traveling shock [23,35] and a
semi-circular furrow into homogeneous soil in three-dimension
[36]. Obviously, the obtained results are verified with respect to
reference solutions to show the accuracy and applicability of the
present approach.

The rest of the paper is organized as follows. After the introduc-
tion, Section 2 briefly presents basic equations for unsaturated flow
in porous media. The IGA for unsaturated flow is then described in
Section 3. Key steps of numerical solution procedure are presented
in Section 4. Numerical validation is presented in Section 5 while
numerical applications and discussions using the proposed IGA
are presented in Sections 6 and 7 respectively. Some conclusions
drawn from the study are presented in Section 8.

2. Basic equations for unsaturated flow

The fluid movement in unsaturated and non-swelling porous
media is governed by the Richards’ equation. Based on the main
variable considered, i.e., the pressure head h, or the moisture con-
tent h, the Richards’ equation can be written in two different forms
as follows: the head-based Richards equation is

CðhÞ @h
@t
¼ r � ðKðhÞrhÞ þ @KðhÞ

@z
ð1Þ

and the moisture-based Richards equation is

@h
@t
¼ r � ðDðhÞrhÞ þ @K

@z
ð2Þ

where CðhÞ ¼ dh
dh is the specific moisture capacity function, K(h) is

the unsaturated hydraulic conductivity tensor, DðhÞ ¼ KðhÞ
CðhÞ is the

unsaturated diffusivity, z denotes the vertical co-ordinate (positive
downward) and r is the gradient operator. The unsaturated
hydraulic conductivity can be determined from the saturated one
by

K ¼ KrðhÞKs ð3Þ

where Ks is a tensor of the fully saturated hydraulic conductivity
while Kr is a function of the moisture content h, termed as the
relative hydraulic conductivity. Note that the hydraulic conductiv-
ity in general could be anisotropic, however it is considered to be
isotropic in this work, i.e., Ks = KsI, with I being the second order
identity tensor.

Each form of the Richards’ equations has its own advantages
and disadvantages. The head-based form is applicable to both sat-
urated and unsaturated conditions, but it generally yields poor per-
formance because of the large mass balance error and erroneous
estimates of the infiltration depth. Obviously, further specific tech-
niques are required in the head-based form to minimize the result-
ing error [11,37]. In contrast, the moisture-based form dominates
over the former one as it is automatically mass conservative with-
out any additional technique, but the applicability of the moisture-
based form is restricted to unsaturated conditions. There also
exists in the literatures another form of the Richards’ equation,
i.e., the mixed form

@h
@t
¼ r � ðKðhÞrhÞ þ @KðhÞ

@z
ð4Þ

In order to solve the mixed form of the Richards’ equation, a pri-
mary variable has to be chosen in the beginning. With the choice of
either the pressure head or the moisture content as its primary var-
iable, many properties described above are encountered again.

In this study, we focus on the solution for the unsaturated flows.
Therefore the moisture-based Richards’ equation is an appropriate
choice, and will be presented in the subsequent sections.

3. IGA formulation for unsaturated flow

3.1. The NURBS basis functions

In this section, a brief summary of some technical features of
the non-uniform rational B-spline (NURBS) is presented. A more
detailed description can be found in [38]. A NURBS curve, bCðnÞ, of
order p is the linear combination of the NURBS basis functions, in
which the coefficients are a given set of the control points

ĈðnÞ ¼
Xn

i

Ri;pðnÞPi ð5Þ

where n is the number of the control points, Pi is the control point
coordinates, and Ri,p(n) is the univariate NURBS basis functions
determined by

Ri;pðnÞ ¼
Ni;pðnÞwiPn

i¼1 Ni;pðnÞwi
ð6Þ

where wi is the non-negative weight assigned for the ith control
point, and Ni,p(n) are the B-spline basis functions of order p.

To construct a set of n B-spline basis functions of order p, a knot
vector k(n) with non-decreasing sequence of the real numbers in a
parametric space, n e [0, 1], is defined as

kðnÞ ¼ fn1 ¼ 0; . . . ; ni; . . . ; nnþpþ1 ¼ 1g ð7Þ

where ni is called the ith knot.
A knot vector is said to be open if the knots are repeated p + 1

times at the start and end of the vector. For the analysis purposes,
the open knot vectors are generally used to take advantage of the
Kronecker-delta property at the boundary points, allowing direct
application of the essential boundary conditions at these points.
Given a knot vector, the univariate B-spline basis function, Ni,p(n),
can be constructed recursively following the Cox-de Boor
formulation

Ni;0ðnÞ ¼
1 ni 6 n < niþ1

0 otherwise

�
for p ¼ 0 ð8aÞ

and

Ni;pðnÞ ¼
n� ni

niþp � ni
Ni;p�1ðnÞ þ

niþpþ1 � n

niþpþ1 � niþ1
Niþ1;p�1ðnÞ for p P 1

ð8bÞ
The B-spline basis functions constructed from an open knot vec-

tor have the interpolation property at both ends of the parametric
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