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a b s t r a c t

Newton’s method is a commonly used algorithm for elasto-plastic finite element analysis and has three
common variations: the full Newton–Raphson method, the modified Newton–Raphson method and the
initial stiffness method. The Newton–Raphson methods can converge to the solution in a small number
of iterations when the system is stable; however, the methods can be quite computationally expensive in
some types of problems, for example where the tangent stiffness matrix is unsymmetric or the plasticity
is highly localized. The initial stiffness method is robust in those cases but requires a larger number of
iterations. This prompted the formulation of many acceleration techniques in literature. In this paper,
those techniques will be briefly discussed. This will be followed by the development of a modified accel-
eration technique for the initial stiffness method. The performance of the modified accelerated initial
stiffness method will be examined in elasto-plastic analyses, using both direct and iterative matrix solv-
ers. The results will be compared – in terms of the required number of iterations and the computation
time – with an existing accelerated initial stiffness method, the non-accelerated initial stiffness method
and the Newton–Raphson tangent stiffness method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Newton’s method is a commonly used computational algorithm
for elasto-plastic finite element analysis. In the general form, an
unbalanced force is applied to the system of equations and the
resulting displacement is calculated. This process is repeated until
equilibrium is achieved within a specified tolerance. Three com-
mon variations of this method include the Newton–Raphson
method, the modified Newton–Raphson method and the initial
stiffness method. The full Newton–Raphson method uses the tan-
gent stiffness matrix which needs to be formed and factorized for
each iteration. The method often provides fast convergence but is
quite computationally expensive for complex constitutive laws
(i.e. if the non-associated plastic flow rule is employed). In the
modified Newton–Raphson method, the tangent stiffness matrix
is recalculated only once at the beginning of each load step, or
when the convergence rate drops below a pre-set rate. This is less
computationally expensive, but results in a slower convergence
rate compared to the full Newton–Raphson method [1].

In the initial stiffness method, the global stiffness matrix is
constructed once at the beginning of the calculation and is kept

constant throughout the analysis. This method faces one major
shortcoming as it requires a greater number of iterations to con-
verge. This is most apparent when dealing with systems with exces-
sive plasticity; in these cases the initial stiffness method requires a
greater number of iterations than the Newton–Raphson methods.

Attempts to modify the Newton–Raphson method have been
unsuccessful, as the modified methods require an excessive num-
ber of iterations to achieve convergence. Simo and Taylor [2] intro-
duced the consistent tangent operator to maintain the quadratic
rate of convergence from the original formulation of the New-
ton–Raphson method. However, the complexity in formulating a
consistent tangent operator only provided more justification for
pursuing acceleration techniques for the initial stiffness method.

Acceleration techniques have been proposed to accelerate the
rate of convergence for the initial stiffness method in an attempt
to make it more favorable. Aiken’s method [3] assumes the error
decays exponentially, but it is unreliable for computer applications
since it has a tendency to predict infinite results when the denomi-
nator approaches or becomes zero. Boyle and Jennings [4] proposed
a modified Aitken acceleration technique, which rectified the
problem and showed considerable promise, as convergence was
achieved faster and with a smaller number of iterations. Nayak and
Zienkiewicz [5] proposed a similar acceleration scheme in which
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each degree of freedom is accelerated individually. This procedure
was reported to be unreliable in practice by Sloan et al. [6]. Crisfield
[7] developed a single parameter acceleration scheme and employed
the line search technique to stabilize the iterations. This method
was, however, designed for the modified Newton–Raphson method.
The efficiency of this technique on the initial stiffness method has
not been reported in literature.

Recently, an important modification to the initial stiffness
method was made by researchers including Thomas [8] and Chen
[9]. They proposed single-parameter acceleration techniques
which benefited from being simple yet robust. The procedure pro-
posed by Thomas [8] uses the least-squares minimization of the
displacement. The method proposed by Chen [9] is based on the
least-squares minimization of the out-of-balance load at the end
of the current iteration. Sloan et al. [6] proposed a modified Tho-
mas acceleration scheme upon reviewing Chen and Thomas’s for-
mulations. In this paper, this will be referred to as the Sloan
Acceleration method. The normal procedure requires one back sub-
stitution and one unbalanced force evaluation for each iteration,
while those formulations require either two back substitutions,
two unbalanced force evaluations or both in order to determine
the single parameter.

To the best of the author’s knowledge, there have not been any
reports on the performance of accelerated initial stiffness methods
in 3D analyses. It would be interesting to examine if the perfor-
mance of these methods would be preserved in such a simulation.
Since solving 3D problems is more computationally intensive than
2D analysis, the limitations of direct matrix solvers for the analysis
of three-dimensional problems using finite element analysis are
well known due to the memory storage requirements for the inver-
sion procedure. The available alternative approach is to utilize iter-
ative solution strategies for solving the equilibrium equations.
Using iterative algorithms in the finite element method allows
problems to be solved with less memory requirements leading to
significant time savings compared to out-of-core direct solvers.
Unlike direct matrix solvers, the solution of a system of linear
equations obtained using the iterative solvers is normally within
some tolerance, rather than an exact solution of the equations.
The advantages of the accelerated initial stiffness method must
also be investigated in simulations using iterative matrix solvers,
in addition to simulations using direct matrix solvers.

This paper proposes an acceleration technique for the initial
stiffness method using a single parameter. No significant workload
is needed to determine the parameter. The formulation was devel-
oped and implemented in the 3D finite element program RS3 of
Rocscience Inc. [10] and various constitutive models were used
to evaluate its performance. Several numerical examples were
solved in order to evaluate the performance of the algorithm using
both direct and iterative matrix solvers.

2. Formulation of the accelerated initial stiffness method

In the displacement finite element method, the global system of
equations to be solved for each iteration can be written as

DUi ¼ K�1Ri�1 ð1Þ

where K is the stiffness matrix, Ri�1 is the residual force for the
previous iteration and DUi is the change in displacement for the
current iteration. The residual force, Ri�1, is calculated as the differ-
ence between the external force and the internal force at the
current iteration. The internal force at iteration i is commonly
obtained by the relation

Fi
int ¼

Z
BTridV ð2Þ

where B is the strain displacement matrix and ri are stresses.

The total displacement Ui at ith iteration is then calculated as

Ui ¼ Ui�1 þ DUi ð3Þ

The total displacement, Ui, is the summation of the displace-
ment at the previous iteration, Ui�1, and the change in displace-
ment calculated using (1), DUi.

Since the stiffness matrix K depends on the displacements U, it
does not remain constant during the iteration procedure. In order
to estimate the global stiffness matrix more accurately and thus
reduce the number of iterations, the stiffness matrix is recalculated
for each iteration in the standard Newton–Raphson method or at
the beginning of the load step in the modified Newton–Raphson
method. The global stiffness matrix is the tangent stiffness matrix
which is calculated as

Kep ¼
Z

BT DepBdV ð4Þ

where Dep is the elasto-plastic stress–strain matrix, and B is the
strain displacement matrix. However, the workload associated with
assembling and factorizing the global stiffness matrix at each itera-
tion may be extensive. Moreover, using the non-associated plastic
flow theory normally results in a non-symmetric global stiffness
matrix which increases the computational requirements.

On the other hand, the initial stiffness scheme only requires the
global elastic stiffness matrix to be formed and factorized once at
the beginning of the simulation. In this method, the global stiffness
matrix is calculated as

Ke ¼
Z

BT DeBdV ð5Þ

where De is the elastic stress–strain matrix, and B is the strain dis-
placement matrix.

2.1. Single parameter accelerated initial stiffness scheme

2.1.1. The Sloan scheme
In the acceleration scheme of Sloan et al. [6], the displacement

is updated as follows

Uiþ1 ¼ Ui þ aiDUiþ1
e þ K�1

e Ri � aiKepDUi
e

n o
ð6Þ

Using the approximation

Ri � aiKepDUi
e � R Ui þ aiDUiþ1

e

� �
ð7Þ

The new update may be written as

Uiþ1 ¼ Ui þ aiDUiþ1
e þ DeUiþ1

e ð8Þ

where

DeUiþ1
e � K�1

e R Ui þ aiDUiþ1
e

� �n o
ð9Þ

In the Sloan method [6], the procedure is started by assuming
a0 = 1 at the beginning of the calculation of each load step. After
the displacements have been updated using Eq. (8) the acceleration
factor for the next iteration, ai+1, is found by performing a least-
square fit so that

aiþ1DUiþ1
e � ai�1DUi

e þ DeUi
e ð10Þ

This lead to the acceleration factor

aiþ1 ¼ ai þ
DUiþ1

e

n oT
DeUiþ1

e

n o
DUiþ1

e

n oT
DUiþ1

e

n o ð11Þ

The algorithm needs two back substitution and two unbalanced
force evaluations for each iteration.
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