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a b s t r a c t

A method based on the linearization of the limit state functions (LSFs) is applied to evaluate the reliability
of series geotechnical systems. The approach only needs information provided by first order reliability
method (FORM) results: the vector of reliability indices, b, of the LSFs composing the system; and their
correlation matrix, R. Two common geotechnical problems—the stability of a slope in layered soil and
a circular tunnel in rock—are employed to demonstrate the simplicity, accuracy and efficiency of the sug-
gested procedure, and advantages of the linearization approach with respect to alternative computational
tools are discussed. It is also found that, if necessary, the second order reliability method (SORM)—that
approximates the true LSF better than FORM—can be employed to compute better estimations of the sys-
tem’s reliability.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Conventional geotechnical risk assessments mainly focus on
deterministic or probabilistic analyses with individual failure
modes (see e.g. [1–3]). During the past decades, system reliability
has become a topic of intense research, covering aspects such as
slope stability (see e.g. [4–11]), retaining walls [9,12] and tunnels
[13].

Previous research on series geotechnical system reliability
tends to focus on the use of (uni or bimodal) bounds to the proba-
bility of failure; several types of simulation-based approaches and
variations of response surface methods (RSMs) have also been
employed. But unimodal bounds [14] are often too wide to be use-
ful and, although bimodal bounds [15] are narrower, they might be
wide when the probabilities of failure corresponding to individual
limit state functions (LSFs) are all ‘large’ (say, >0.01; see e.g. [16]),
or when a large number of failure modes are considered [17]. In
such cases, the bimodal bounds could be inappropriate.

Monte Carlo Simulation (MCS) [8], Importance Sampling (IS)
[7,18] and the subset simulation method [19] offer unbiased esti-
mators of the system’s probability of failure, Pf. However, they
could become unfeasible with computationally expensive prob-
lems (for instance, complex finite element models). Different types

of RSMs—such as the classical RSM [20], ANN-based RSM [21],
stratified response surfaces [22] and Kriging-based RSM [11,23]—
have been proposed to partially overcome this drawback. However,
they are approximate methods and, therefore, are not guaranteed
to provide good estimators of Pf.

An alternative method, based on the linearization of the LSFs, is
also possible to compute the reliability of series or parallel geo-
technical systems [24–26]. However, for series systems, it has only
been applied to very simple cases: e.g., short-term slope stability
analyses of cohesive soils with two representative slip surfaces
only [26], in which the (almost) linear nature of the LSFs makes
it a natural solution. In other words, the ability of the linearization
approach to perform well with other common series geotechnical
problems is still untested. This note aims to illustrate the ability,
in terms of simplicity, accuracy and efficiency, of the linearization
approach to evaluate the reliability of two typical series geotechni-
cal systems: a layered soil slope and a circular rock tunnel.

2. Approximation to the reliability of a series system

The probability of failure, Pf, of a series system can be approxi-
mated by transforming the random variables and LSFs to the inde-
pendent standard normal space and linearizing the (transformed)
LSFs at the design point. (The design point is the point in the failure
domain closest to the origin of the independent standard normal
space.) Based on the results (reliability indices and correlation
matrix) of the first order reliability method (FORM), and following
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the convention that giðXÞ 6 0 indicates ‘‘failure’’, Cho [26] indi-
cated that Pf can be computed through the unions and intersec-
tions of the failure domains associated with the hyperplanes
tangent to each design point (see Fig. 1), as:
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where n is the number of LSFs, gi(X) is the LSF in original (physical)
space, Un(�b; R) is the cumulative density function (CDF) of the
n-dimensional standard normal distribution evaluated for the
vector of reliability indices, �b = [ �b1, �b2, . . ., �bn], with correla-
tion matrix, R, given by R½i; j� ¼ aT

i aj. (a is the unit direction vector
at the design point.) The probability of event-intersection given by
Un can be computed by the MATLAB pre-complied function
mvncdf.

As will be demonstrated in Section 3.1, however, Eq. (1) could
be cumbersome when the number of LSFs becomes large. (Note

that
Pn

i¼2
n
i

� �
event-intersection reliability problems need to be

solved.) In this context, building on Barranco-Cicilia et al. [27],
Cho [26] suggested that ‘‘As an approximation, because the proba-
bilities of event-intersections are generally small, terms higher
than the second order in Eq. (1) can usually be neglected’’. But,
as will be illustrated in Section 3, neglecting them may introduce
significant errors when the probabilities of event-intersections
higher than the second order are relatively large.

In this study, use is made of another strategy, originally due to
Hohenbichler and Rackwitz [28], to overcome the aforementioned
shortcomings and to solve series geotechnical systems simply,
accurately and efficiently. For a series system with n LSFs, Pf can
be computed through the complementary of the intersection of
safe domains (see Fig. 1):

where �giðUÞ is the LSF in the (transformed) independent standard
normal space and li (U) is the linearization of �giðUÞ at the design
point. Note that Eq. (3) only needs to compute one event-intersec-
tion reliability problem. In general, the reliability index corre-
sponding to the ith LSF can be computed using FORM, although
as will be shown, the reliability indices computed with second
order approximations (SORM) improve the computed estimates
of Pf and might be needed when the LSFs are highly non-linear.

3. Case studies

Two typical geotechnical problems, taken from the literature,
are here employed to illustrate the ability of the suggested method
to compute the reliability of series geotechnical systems.

3.1. Soil slope in a layered profile

The probability of failure of a soil slope, where many slip sur-
faces are feasible, will be larger than for any individual slip surface;
therefore, to compute the system’s reliability, all potential slip sur-
faces would theoretically need to be considered [4]. Later research
(see [10]), however, has shown that it is enough to consider a lim-
ited number of (weakly correlated) slip surfaces—those with a
higher contribution to the system’s probability of failure (for a dis-
cussion of how to identify them, see [26,29]).

To illustrate the ability of the linearization method to deal with
a large number of LSFs, we start with the short-term analysis of the
soil slope with 2 clay layers proposed by Ching et al. [7]; in partic-
ular, its reliability is computed using the 8 slip surfaces discussed
by Low et al. [9]. Fig. 2 shows the geometry of the slope and the 8
slip surfaces considered; it also lists the means and standard devi-
ations of two independent log-normal variables, Cu1 and Cu2,
employed to model the undrained shear strengths for both clay
layers.

Table 1 lists the reliability index vector, b, and the correlations
between LSFs, R, computed by Low et al. [9] using Bishop’s simpli-

fied method with circular slip surfaces. (The LSFs are given by
G(X) = FS(X) � 1, where X is the vector of random shear strengths
and FS is the factor of safety of the slope.) Table 2 presents the
result simulated with Monte Carlo by Ching et al. [7] for this
slope—which can be considered as the ‘‘reference’’—and compares
it with bimodal bounds, the method suggested by Cho [26] and
with the proposed linearization approach. Most of the methods
considered provide very similar solutions, which are consistent
with the MCS result; however, the method suggested by Cho [26]
provides a Pf result that is far away from the ‘exact’ MCS result
when terms higher than the second order are neglected—indeed,
it is an infeasible solution, as it provides a negative Pf. The reason
for such a difference is that neglecting terms higher than the sec-
ond order could introduce significant errors for highly correlated
LSFs.

On the other hand, the computational times for these methods
are very different. The computational costs to evaluate Pf with
Cho’s [26] method when terms higher than the second order are
neglected (0.04157 s) and the proposed linearization method
(0.04877 s) are both minor and very similar (the computational
times correspond to a MATLAB code run on a PC with an Intel Core
i3-2100 CPU @3.10 GHz and 8 GB of RAM). But when terms higher
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Fig. 1. A diagram in a two-dimensional standard normal space to illustrate the
differences between Cho’s method [26] and the method employed herein (NOTE:
The LSFs shown correspond to b1 and b3 from Example 1.).
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