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a b s t r a c t

A simplified methodology is proposed for elastoplastic calculations which holds for associative models. It
is based on the representation of the elastoplastic model based on a rotation of the principal stresses and
the fact that, in such system of coordinates, the direction that minimizes the square of a distance between
a trial stress and the plastic surface has the same direction as the plastic deformation evolution. Such an
approach allows for the elastoplastic calculation of complex models to be simpler and more efficient
computationally. The proposed methodology is verified by the application to the elastoplastic model of
Sandler–DiMaggio.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical behavior of granular materials is very complex,
involving plasticity by hydrostatic pressure, differences in the
resistance for triaxial compression and triaxial stress, and porosity
dependency, among other factors. In order to capture these effects,
advanced constitutive models are necessary.

Elastoplastic constitutive models are based on a yield criterion,
a flow rule and a hardening law, giving rise to an initial value prob-
lem with restrictions. Due the complexity of realistic constitutive
models, stiff non-linear systems are generated and the use of
efficient numerical integration methods are required.

An approach for the computation of elastoplastic problems is
described in the book [1], Chapter 7, where the numerical integra-
tion is divided into two main steps: the elastic trial step and the
plastic corrector step (or return-mapping algorithm). If trial stress
computed in the first step fails to verify the plastically admissible
condition, it is projected onto the yield surface by the return-
mapping algorithm.

In the present paper we propose a simplified implementation of
the plastic corrector step procedure, which holds for associative

models, reducing the number non-linear equations to be solved
and improving efficiency.

Using an iterative method for solving a system of non-linear
elastoplastic equations, the convergence behavior is strongly
dependent on the choice of variables to represent the residual vec-
tor. In this sense, an elastoplastic model can be better represented
in terms of the principal stresses. Furthermore, in plastic calcula-
tions numerical instabilities can occur, in which small variations
in the representation of floating point numbers may decide the fea-
sibility of pursuing the calculations. Therefore, in addition to mod-
eling the problem in the space of the principal stresses, we propose
a distance function that has to be minimized in order to determine
the projection of the plastic deformation on the yield surface. This
geometric plastic calculation is possible thanks to the representa-
tion of the yield surface within a Haigh–Westergaard cylindrical
coordinates [2], and the application of a rotation to a state of
intermediate pressure. This procedure avoids the work in three-
dimensional space, with a reduction in the number of unknowns
of the elastoplastic problem. Thus, the convergence of the iterative
method can be easily obtained, stabilizing the calculation, with a
consequent significant savings in computational time.

To illustrate the effect of using this new approach, we consider
the elastoplastic model described in the article [3], where the
closure of the cap and the surface fault model are modified to allow
the adjustment of the surface so that it is possible to characterize
the material in triaxial compression and triaxial traction. For the
results presented here, the implementation uses the NeoPZ library
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[4,5], which is an object-oriented programming environment pro-
viding a framework for developing finite element simulations, aug-
mented with special classes required for the integration of
elastoplastic constitutive models.

2. Constitutive elastoplastic model

The total deformation tensor e can be divided into two parts:
e ¼ ee þ ep, an elastic part ee and a plastic part ep. The free energy
u is also divided into portions of elastic ueðe� epÞ and plastic con-
tributions upðaÞ, in which a is the internal damage variable. The
elastic law establishes the tensor r ¼ �q @ue

@ee , in which �q is the spe-
cific mass in the reference configuration. The plastic portion is
not related to the strain state of the material; instead, it is related
to the history of irreversible dissipative processes to which the
material was submitted based on three fundamental axioms: an
yield criterion, a flow rule, and a hardening law.

� Yield criterion. Describes the transition between the elastic and
plastic domains through a plasticity function U ¼ Uðr;AÞ,
where A ¼ q@up=@a is the hardening thermodynamic force.
The plasticity function assumes non-positive values in an elastic
basis and null values in a plastic basis.
� Flow rule. Assumes the existence of a plastic potential function

W ¼ Wðr;AÞ, which specifies how the plastic deformation tensor
ep evolves in a plasticity process _ep ¼ _cN, in which Nðr;AÞ ¼
@W=@r is the flow direction, and cðtÞ is a plastic multiplier.
� Hardening law. Specifies how the internal damage variable

evolves _a ¼ _cH, in which Hðr;AÞ ¼ �@W=@A is the hardening
modulus.

In summary, the elastic–plastic constitutive model is formed by
the following initial value problem: given the initial values epðt0Þ
and aðt0Þ and the history of the infinitesimal deformation tensor
eðtÞ; t 2 ½t0; T�, to find the functions that define the plastic defor-
mation tensor epðtÞ, the internal damage variable aðtÞ and a plastic
multiplier _cðtÞ that meet the constitutive elastoplastic equations

_ep ¼ _cN
_a ¼ _cH

�
ð1Þ

with the restrictions _cðtÞP 0; UðrðtÞ;AðtÞÞ � 0, _cðtÞUðrðtÞ;AðtÞÞ ¼
0 in each (pseudo) instant t 2 ½t0; T�.

2.1. Algorithm for solving the incremental elastoplastic constitutive
problem

For the integration of elastoplastic non-linear systems, the use
efficient numerical integration methods is required. Using the
implicit Euler method at a step of (pseudo) time ½tn; tnþ1� of a load-
ing cycle, given a deformation state en and the corresponding plas-
tic deformation ep;n and the internal state variable an at tn, for a
prescribed incremental strain De, then the plastic deformation
ep;nþ1, the internal variable anþ1 and Dc at the next step are
obtained as a solution of the problem that consists of the incre-
mental non-linear system of equations

ee;nþ1 ¼ ee;n þ De� DcNnþ1

anþ1 ¼ an þ DcHnþ1
ð2Þ

for the unknowns ee;nþ1; anþ1 and Dc, subjected to the restrictions

Dc P 0; Uðrnþ1;AÞ � 0; DcUðrnþ1;AÞ ¼ 0 ð3Þ

As shown in [1], the imposition of restrictions suggests a proce-
dure for solving the problem in two major steps. It begins with a
purely elastic predictor process (elastic trial step), with Dc ¼ 0. In
this case, trial elastic strain ee

trial ¼ ee;n þ De and internal variables

atrial ¼ an are defined. Then rtrial is calculated according to ee
trial,

and the corresponding Uðrtrial;AÞ is given. If Uðrtrial;AÞ 6 0, already
a valid solution to the system is reached, and the variables are
updated by the trial ones. Otherwise, a plastic corrector step
(also known as plastic return-mapping scheme) is performed
reformulating the incremental problem searching ee;nþ1; anþ1 and
Dc satisfying

ee;nþ1 ¼ ee
trial � DcNðrnþ1;AÞ ð4Þ

anþ1 ¼ atrial þ DcHðrnþ1;AÞ ð5Þ
Dc > 0; Uðrnþ1;AÞ ¼ 0 ð6Þ

Next, the plastic strain is updated

ep;nþ1 ¼ ep;n þ De� Dee

For the specific resolution of the initial elastoplastic value prob-
lem, five main classes of tools are available at NeoPZ environment:

� Tensorial: implements tensor in tree dimensions.
� Elastic response: implements the elastic response of an isotropic

material.
� Yield criterion: implements the plastic function U, the plastic

flow vector N, and the hardening modulus H.
� Thermodynamic hardening force: implements the calculation of

the thermodynamic force A.
� Incremental stress calculation: implements the solution of the

elastoplastic initial value problem using the Newton’s method.

3. Plastic return-mapping scheme using rotated principal
stresses

In the study of plasticity, instead of using the six stress indepen-
dent components for the geometric representation of a state of
stress at a point, a simplified alternative is to calculate the princi-
pal stresses r ¼ ½r1;r2;r3�T as coordinates. This space is called
Haigh–Westergaard stress space (HW). Furthermore, the constitu-
tive law may be simplified by the introduction of a new coordinate
system of rotated principal variables, similar to the decomposi-
tions defined in [6,7].

3.1. Haigh–Westergaard stress space

According to [2], the stress tensor r may be represented in
terms of the principal stresses sorted in descending order
r1 > r2 > r3, which are given by the equations

r ¼
r1

r2

r3
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in terms of the hidrostatic and deviatoric components, and the Lode
angle
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which is only valid for the b 2 0; p3
� �

; I1; J2 and J3 being the first
invariant of the stress tensor, the second and third invariants of
the deviatoric stress tensor, respectively.

The stress strain relation is given by

e ¼
e1

e2

e3
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