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a b s t r a c t

This study addresses the phenomenon of the critical scale of fluctuation (SOF) for active lateral force (Pa)
in undrained clay when there is a spatial variability in the clay. The phenomenon is significant under
shear strength (sf) random fields but is insignificant under unit weight (c) random fields. It is found that
the phenomenon of the critical SOF is connected to the nature of the spatial averaging, which is ‘‘line
averaging’’ under sf random fields and is ‘‘area averaging’’ under c random fields. The former averaging
effect (line) is significantly weaker than the latter (area), so the tendency for the critical slip plane to seek
for a favorable location is stronger for the sf random field than for the c random field. Hence, the phenom-
enon of the critical SOF is more pronounced under sf random fields than under c random fields. The
underlying mechanisms for the phenomenon of the critical SOF will be explored in this paper.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Spatial variability of soil properties has been extensively stud-
ied in recent years. More interestingly, it is shown that more com-
plex behaviors can appear when the scale of fluctuation (SOF) is
comparable to some multiple of the characteristic length of the
structure [1] (e.g., height of slope, diameter of tunnel, depth of
excavation). The complex behavior typically manifests itself as
the discrepancy from the nominal behavior, e.g., the mean of the
bearing capacity is less than the nominal value. In this study, the
‘‘critical SOF’’ or ‘‘worst case SOF’’ refers to the scale of fluctuation
where the discrepancy becomes the largest. This critical SOF is
observed in other studies as well [2–9]. Fenton and Griffiths [2]
studied the bearing capacity of a strip footing on spatially random
soils and indicated that there exists a worst case SOF that is
approximately equal to the width of the footing. Fenton et al. [3]
studied the retaining wall problems and found that the critical
SOF is close to the wall height, at which the failure probability
(pf) becomes significantly larger. Breysse et al. [4] explored the
soil–structure interaction issues and showed that there exists a
critical SOF that is proportional to the characteristic dimension of
the structure, at which the responses (such as differential settle-
ments, moments, and stresses) are significantly larger. Griffiths
et al. [5] and Soubra et al. [6] also illustrated the existence of the
critical SOF for footings. More recently, the second author and his
co-workers [7–9] found that the phenomenon of the critical SOF
exists even in problems with very simple stress states.

Although the phenomenon of the critical SOF was observed in
literature, its mechanism remains unclear. The objective of this
study is to demonstrate one important aspect regarding the phe-
nomenon of the critical SOF using the retaining wall example in
undrained clays. In here, the critical SOF is defined as the scale of
fluctuation at which the mean value of the active lateral force devi-
ates the most from its nominal value. The phenomenon of the crit-
ical SOF is said to be significant if such deviation is large. It is found
that there is a connection between the phenomenon of the critical
SOF and the nature of the spatial averaging. The phenomenon will
become significant when the spatial averaging effect is weak and
will become insignificant when the effect is strong. The case with
spatially variable shear strength (sf) only is taken to represent
weak spatial averaging, as the spatial averaging only takes place
along the potential slip plane (see Fig. 1) – it is ‘‘line averaging’’.
The case with spatially variable unit weight (c) only is taken to rep-
resent strong spatial averaging, as the spatial averaging takes place
over the entire triangular domain above the potential slip plane
(Fig. 1) – it is ‘‘area averaging’’. Note that unit weight is one of
the least variable soil properties and is often treated as a determin-
istic variable in literature (e.g., [10]). Indeed, problems with spa-
tially variable c only are not interesting. We only use the case
with spatially variable c to exemplify strong spatial averaging, to
contrast with the case with spatially variable sf. Such contrast will
help to demonstrate the mechanisms for the phenomenon of the
critical SOF. A case with spatially variable c itself is not the focus
of this study.

On the surface, our principle finding is that the phenomenon of
the critical SOF is connected to the nature of the spatial averaging
(namely, line or area averaging?). It is found that there are two
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intermediate mechanisms between the phenomenon of the critical
SOF and the nature of the spatial averaging. They are

1. The tendency for the critical slip plane to ‘‘seek’’ for a favorable
location. For spatially variable sf, this tendency is to seek for the
‘‘weak path’’. For spatially variable c, this tendency is to seek for
the ‘‘heavy triangular domain’’.

2. The variability of the ‘‘averaged property function’’. This func-
tion describes how the line average of shear strength (or the
area average of unit weight) varies with respect to the daylight
position x (Fig. 1). This function is called the ‘‘averaged property
function’’.

First, it is found that the phenomenon of the critical SOF is con-
nected to the tendency of ‘‘seeking’’. Then, the tendency of seeking
is, in turn, connected to the variability of the averaged property
function. Finally, the variability of the averaged property function
is connected to the nature of the spatial averaging. The aim of this
paper is to demonstrate the numerical evidences for the connec-
tions among the aforementioned mechanisms.

2. Simulation of active lateral force Pa

Spatial variabilities of soil properties are commonly modeled by
random fields [11]. In this study, an undrained clay is considered,
i.e., the shear strength (sf) = the undrained shear strength (su).
The shear strength (or unit weight) at a point is denoted by sf(x,z)
(or c(x,z)), where x and z are the horizontal and vertical coordi-
nates, respectively. The soil property is simulated as a stationary

Gaussian random field with inherent mean = l and inherent stan-
dard deviation = r. To define the correlation between two locations
with horizontal distance = Dx and vertical distance = Dz, the single
exponential (SExp) auto-correlation model is considered in this
study [11,12]:

qðDx;DzÞ ¼ exp �2jDxj
dx
� 2jDzj

dz

� �
ð1Þ

where dx and dz are the horizontal and vertical SOFs. The two-
dimensional (2D) stationary Gaussian random field can be simu-
lated by the Fourier series method proposed in [13].

2.1. Simulating Pa under sf random field only

The limit equilibrium method (LEM) is adopted to simulate Pa

samples under sf random field only (c is a fixed constant). As men-
tioned previously, this represents the case with weak averaging ef-
fect, as spatial averaging only takes place along the potential slip
plane (Fig. 1). The steps for this LEM have been presented in detail
elsewhere [14]. The possible friction between the wall and soil is
not considered. The idea is fairly simple. Numerous potential slip
planes (all pass through the toe in Fig. 1) are produced. Each poten-
tial slip plane is characterized by the horizontal daylight position x
(Fig. 1). The average of the sf values along each potential slip plane
can be computed using the Fourier series method proposed by [13]
(see Eq. (19) in [13]). This ‘‘line’’ average is denoted by sLA

f ðxÞ. Using
force equilibrium, it is shown in [14] that

Pa ¼max
x

FðxÞ ¼max
x

1
2
cH2 � sLA

f ðxÞ �
x2 þ H2

x

 !
ð2Þ

where c is the deterministic soil unit weight; H is the height of the
retaining wall; F(x) is the lateral force required to prevent the slid-
ing of the triangular wedge above the potential slip plane (Fig. 1).
Note that Eq. (2) does not consider the possible tension crack. In this
case, Pa in Eq. (2) may include tensile stresses and can be negative if
the soils can stand on its own.

The process of simulating Pa using LEM is illustrated in Fig. 2.
Fig. 2a shows a realization of the sf random field, where xA and
xB in Fig. 2a are the horizontal daylight positions of the two
potential slip planes. There are actually infinite potential slip
planes passing through the toe, but for clarity, only two of these
planes are shown. Each potential slip plane has a line average
sLA

f , and the resulting continuous line average process sLA
f ðxÞ forms

Nomenclature

F lateral force
Pa active lateral force
Pa,n nominal value for Pa

pf failure probability
FEA finite element analysis
RFEA random field finite element analysis
LEM limit equilibrium method
H wall height
c unit weight
c(x,z) the random field for c
cAA area average of c(x,z) over a potential slip wedge
su undrained shear strength
sf shear strength
sf(x,z) the random field for sf

sLA
f line average of sf(x,z) along a potential slip plane

r inherent standard deviation
l inherent mean

lsf
inherent mean of sf

lc inherent mean of c
COV coefficient of variation
COVsf coefficient of variation of sf

COVc coefficient of variation of c
SOF scale of fluctuation
dx horizontal scale of fluctuation
dz vertical scale of fluctuation
b inclination angle of the potential slip plane
q auto-correlation
SExp single exponential model
Dx horizontal distance
Dz vertical distance
x horizontal coordinate
z vertical coordinate
x� daylight position of the critical slip plane

Fig. 1. Schematic for the potential slip plane (solid line) and the triangular domain
(gray region) above the potential slip plane.
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