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a b s t r a c t

Two integration algorithms, namely the implicit return mapping and explicit sub-stepping schemes, are
adopted in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay and
are implemented into finite element code. The model is a representative of a series of bounding surface
models that have typical characteristics, including isotropic and kinematic hardening rules and a rota-
tional bounding surface to capture complex but important cyclic behaviours of soils, such as cyclic shake-
down and degradation. However, there is no explicit current yield surface in the model to which the
conventional implicit algorithm returns the stress state back or the sub-stepping integration corrects
the drift of the stress state. Hence, necessary modifications have been made for both of the integration
schemes. First, the image stress point is mapped or corrected to the bounding surface instead of mapping
back or correcting the stress state to the yield surface. Second, the unloading–loading criterion is checked
to determine the image stress point rather than checking the yield criterion after giving the trial stress
state in a conventional way. Comparative studies on the accuracy, stability and efficiency of the two inte-
gration schemes are conducted not only at the element level but also in solving boundary value problems
of monotonic and cyclic bearing behaviours of rigid footings on saturated clay. For smaller strain incre-
ments, there is no significant difference in the accuracy between the two integration schemes, but the
explicit integration shows a higher efficiency and accuracy. For relatively larger increments, the implicit
return mapping algorithm presents good accuracy and more robustness, while the sub-stepping algo-
rithm shows deteriorating accuracy and suffers the convergence problem. With the tolerance used in
the present model, the bearing capacity of the rigid footing predicted by the return mapping algorithm
is closer to the available analytical and numerical solutions, while the bearing capacity predicted by
the sub-stepping algorithm shows a marginal increase.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The response simulation of offshore structures embedded in
seabed soils under cyclic loading still faces significant obstacles.
First, it requires efficient and accurate constitutive models that
reflect important cyclic behaviours of seabed soils, such as the hys-
teretic property, initial anisotropy, cyclic shakedown and stiffness
degradation as well as the accompanying accumulation of plastic
strain and pore pressure [1–3]. However, to capture all of these
important but complex behaviours makes the constitutive model
more lengthy and complicated. Moreover, in order to be applicable
to offshore geotechnical calculations, the constitutive model
requires efficient and robust numerical implementations, whereas
the integration scheme of the incremental constitutive relations is

the cornerstone that controls the accuracy, stability and efficiency
of the calculations.

Existing approaches for stress integration of elasto-plastic con-
stitutive models are generally classified as implicit and explicit
schemes. Implicit algorithms that are based on the closest point
projection or the return mapping [4–10] require a consistent
tangent operator that corresponds to the final stress state of the
integration increment. This arrangement means that an iterative
calculation of the final stress state is needed. Explicit algorithms
such as the algorithm with automatic error control and sub-
stepping [11–14] require a continuum tangent operator that corre-
sponds only to the initial stress state of the integration increment
while using the adaptive sub-stepping to control the error. Both of
the algorithms have been developed in classic elasto-plastic
models but are still less reported for cyclic plasticity models.
Manzari and Nour [7] first attempted to use an implicit algorithm
in the bounding surface model for cyclic behaviours of soil. The
results demonstrated the robustness of the implicit integration in
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the bounding surface model. However, one drawback of the model
is the unrealistic description of cyclic loading because it is based on
the fully isotropic hardening rule. Rouainia and Wood [8] pre-
sented an implicit return mapping integration in a modified bubble
model based on a kinematic hardening rule, but it was only tested
by a soil element. Borja et al. [9] used an implicit scheme to solve a
two-surface model. However, the algorithm was run on the strain
space in order to consider the nonlinear hyper-elasticity. Zhao et al.
[15] argued that there were difficulties in the application of the im-
plicit integration scheme to cyclic plasticity models and described
the explicit integration of two complex constitutive models. How-
ever, they did not provide the performance of the algorithm in ana-
lysing the cyclic behaviour of the soil. Andrianopoulos et al. [16]
proposed an explicit integration in the bounding surface model
to analyse the earthquake liquefaction of noncohesive soils.

The accuracy, stability and efficiency of integration schemes are
important issues in large-scale numerical simulation. However,
comparative studies on the performance of the two integration
algorithms in a complex cyclic plasticity model are rather limited.
The conclusions from different researchers in solving boundary va-
lue problems are not uniform. Potts and Ganendra [17] compared
the accuracy of return mapping implicit and sub-stepping explicit
schemes in the Cam-clay model and stated that the sub-stepping
algorithm was more accurate for a specific incremental size and
for the analysis of a cavity expansion problem. Manzari and Pra-
chathananukit [18] compared the closest point projection implicit
integration with the sub-stepping explicit integration in a two-sur-
face model and implemented them into finite element code. It was
observed that for a relatively large strain increment, the implicit
algorithm remained stable and accurate, while the explicit algo-
rithm faced convergence difficulties. Sołowski et al. [19] ran both
implicit and sub-stepping explicit integrations in the Barcelona ba-
sic model of unsaturated soil at a single stress point. However, it
was concluded that for a larger strain increment, the implicit
scheme offered faster convergence but might cause inaccurate
computations. These findings highlight the importance of compar-
ative studies on the accuracy, stability and efficiency of the two
integration schemes.

The bounding surface plasticity model with a vanishing elastic
region is more attractive for large-scale mathematical modelling
related to cyclic loading because it is not necessary to address
the evolvement of more than two yield surfaces (such as in the
two-surface and multi-surface plasticity models [20–22]) and the
smooth translation from nonlinear elastic to elasto-plastic behav-
iours. A recently developed anisotropic bounding surface model
[23] has been shown to realistically present the stress–strain
behaviours of the soils, including the cyclic shakedown and degra-
dation. The present work is to implement the developed model
with a vanishing elastic region [23] into a commercial finite ele-
ment code with two integration schemes, i.e., the return mapping
and sub-stepping integration schemes. However, there is no expli-
cit current yield surface in the model to which the conventional
implicit algorithm returns the stress state back or the sub-stepping
integration corrects the drift of the stress state. Several necessary
modifications should be made for both of the integration schemes.
The performance, including the accuracy, robustness and efficiency
of the two integration schemes, is investigated in detail both at the
element level and in solving boundary value problems that involve
monotonic and cyclic bearing behaviours of rigid footings on nor-
mally consolidated saturated clay.

2. Outline of the anisotropic bounding surface model

In this section, the anisotropic bounding surface plasticity mod-
el with a vanishing elastic region for saturated clay proposed by Hu

et al. [23] is generalised to the multiaxial stress space. Within the
framework of critical state soil mechanics, this model has been
shown to accurately simulate important characteristics of satu-
rated clay under cyclic loading such as initial anisotropy, reversal
flow, cyclic shakedown and stiffness degradation by combining
isotropic with kinematic hardening rules and adopting a rotational
bounding surface. A brief description of the model is presented
below.

In terms of notation, tensors are written in bold face characters
to allow them to be easily distinguished from scalars. All of the
presented stress quantities are effective. The symbol ‘:’ denotes
an inner product of two second-order tensors (e.g., c:d = cijdij) or
a double contraction of the adjacent indices of tensors of rank
two and higher (e.g., C : ee ¼ Cijklee

kl). The symbol ‘�’ denotes the
Kronecker product of two second-order tensors (e.g., c � d = cijdkl).

2.1. Bounding surface formulation

For the initial consolidation process, the form of the bounding
surface in the model proposed by Hu et al. [23] is the same as
the form adopted by Dafalias [24], which can be written in the con-
ventional triaxial p–q stress space as

F ¼ �p2 � �ppc þ
ð�q� a�pÞ2

M2 � a2
¼ 0 ð1Þ

where �p and �q are mean effective and deviatoric stresses, respec-
tively, and the superimposed bar indicates that the variables are re-
lated to the bounding surface; M is the slope of the critical state line
and equals Me for extension and Mc for compression; pc and a define
the size and inclination of the bounding surface, respectively, and
their initial values are denoted by p0 and a0. The concept of the
model is shown graphically in Fig. 1 in the p–q stress space.

The generalisation of Eq. (1) in the multiaxial stress space is ob-
tained by standard methods [25,26], as follows:

F ¼ �p2 � �ppc þ
3

2ðM2 � a2Þ
½ð�s� �paÞ : ð�s� �paÞ� ¼ 0 ð2Þ

where �s and a are deviatoric and anisotropic tensors, respectively,

and a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 a : a

q
is a measure of the degree of soil anisotropy.

It can be seen from Eq. (2) that the bounding surface passes
through the origin of the stress space. However, for the sequence
shearing after the initial consolidation process, the model [23]
has assumed that the bounding surface translates according to
the kinematic hardening rule, which will be briefly explained in
the following section (the details can be found in Ref. [23]). As a re-
sult, the endpoint of the bounding surface, which coincides with
the origin of the stress space in the initial consolidation process,
will translate to a new position in the stress space. We denote
the endpoint as n (Fig. 1). Hence, the translating bounding surface
in the multiaxial stress space is expressed as
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Fig. 1. Schematic of the rotational bounding surface in the p–q space.
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