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Introduction: Computational methods have been widely applied to toxicology across pharmaceutical, con-
sumer product and environmental fields over the past decade. Progress in computational toxicology is now
reviewed. Methods: A literature review was performed on computational models for hepatotoxicity (e.g. for
drug-induced liver injury (DILI)), cardiotoxicity, renal toxicity and genotoxicity. In addition various publications
have been highlighted that use machine learning methods. Several computational toxicology model datasets
from past publications were used to compare Bayesian and Support Vector Machine (SVM) learning methods.
Results: The increasing amounts of data for defined toxicology endpoints have enabledmachine learningmodels
that have been increasingly used for predictions. It is shown that acrossmany differentmodels Bayesian and SVM
perform similarly based on cross validation data.Discussion: Considerable progress has beenmade in computa-
tional toxicology in a decade in both model development and availability of larger scale or ‘big data’models. The
future efforts in toxicology data generation will likely provide us with hundreds of thousands of compounds that
are readily accessible formachine learningmodels. Thesemodelswill cover relevant chemistry space for pharma-
ceutical, consumer product and environmental applications.
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1. Introduction

Computational toxicology aims to use rules, models and algorithms
based on prior data for specific endpoints, to enable the prediction of
whether a new molecule will possess similar liabilities or not. In some
cases the models are derived from discrete molecular endpoints while
in others they are quite broad in scope. Previous reviews have described
in some detail the computational toxicology models for the human
ether-a-go-go-related gene (hERG) potassium channel, cytochrome
P450, and pregnane X receptor (PXR) as examples (Ekins, 2007b;
Ekins & Williams, 2012; Ekins et al., 2012; Kortagere, Krasowski, &
Ekins, 2012; Williams, Ekins, Spjuth, & Willighagen, 2013). While
there are several books devoted to computational toxicology alone in
which the reader can find more detail on algorithms and approaches
developed or applied (Cronin & Livingstone, 2004; Ekins, 2007b;
Helma, 2005). In the current review the aim is to provide examples of
commonly encountered toxicity issues and the current status of models
for their detection. This review will describe models for hepatotoxicity
(e.g. for drug-induced liver injury (DILI)), cardiotoxicity, renal toxicity
and genotoxicity and will describe recent literature on these topics.
Models developed with publically available or published data will be
used to illustrate how various computational methods compare. This
review excludes areas like reactive metabolites, idiosyncratic toxicity,
phototoxicity, and ocular toxicity (Solimeo, Zhang, Kim, Sedykh, &
Zhu, 2012) which are likely no less important. The focus will also be
predominantly on ligand-based approaches (e.g. pharmacophores, ma-
chine learning, and quantitative structure activity relationships). The
goal is to show how thesemodels are used in industry (pharmaceutical,
consumer products and regulatory) and academia and their impact as
well as recommendations for the future (Ekins & Williams, 2012).

2. Simple models

Since the Rule of Five described orally active compounds in terms of
a few simple molecular properties (Lipinski, Lombardo, Dominy, &
Feeney, 1997) there has been some development of other types of
rules. For example, Pfizer scientists determined thatwith 245preclinical
compounds with ClogP b3 (a measure of hydrophobicity) and total
polar surface area N75A2 (surface sumof nitrogens, oxygens and hydro-
gens) there were fewer toxicity findings (Hughes et al., 2008). Many
pharmaceutical companies have developed computational filters to
remove reactive molecules from their screening datasets (Hann et al.,
1999; Pearce, Sofia, Good, Drexler, & Stock, 2006; Walters & Murcko,
2002). Abbott developed an assay to detect thiol reactive molecules by
NMR (ALARM NMR) (Huth et al., 2005, 2007) and this data was in
turn used to create a Bayesian classifier model to predict reactivity
(Metz, Huth, & Hajduk, 2007). It has also recently been suggested that
molecules failing such reactivity filters may correlate (Ekins &
Freundlich, 2011) with the number of violations of the Rule of Five
(Lipinski et al., 1997). So this relationship appears to be cyclic, reac-
tivity and toxicity may correlate with such rule violations. At the mo-
lecular level for a specific toxicity, there is however rarely a reliance
on one particular descriptor. This therefore requires more sophisti-
cated efforts to find a relationship between molecule descriptors
and toxicity endpoint, using some of the methods that will be
described in the following sections. Simple rules may give you a
high level approximation of toxicity, but the deeper you go into a tar-
get or mechanism the murkier it gets. The amount of biological data

being created due to high throughput screening and by compilation
of published data creates a wealth of information for assessing rela-
tionships between physicochemical properties and compounds
(Gleeson, Hersey, Montanari, & Overington, 2011) and for develop-
ing computational models although wemust not lose sight of the im-
portance of data quality (Ekins, Olechno, &Williams, 2013; Fourches,
Muratov, & Tropsha, 2010; Williams & Ekins, 2011; Williams, Ekins,
& Tkachenko, 2012). Using literature data compilations it appears that
safety profile is inversely correlated with target potency (Gleeson et al.,
2011). Pfizer used data for over 100,000 compounds extracted from
the literature and measured in their own laboratories against many dif-
ferent assays. They used these data to develop a Bayesian model for
predicting cytotoxicity (Langdon, Mulgrew, Paolini, & van Hoorn, 2010)
with training Receiver Operator Characteristic (ROC) = 0.84. Other
generic models of human toxicities have also been published.

3. Hepatotoxicity

There appear to be many factors that may come into play when de-
scribing hepatotoxicity and some of these have been computationally
modeled to different extents. For example, computational quantitative
structure activity relationship (QSAR) or machine learning methods
have been used for predicting hepatotoxicity (Cheng & Dixon, 2003;
Clark, Wolohan, Hodgkin, Kelly, & Sussman, 2004) or drug–drug inter-
actions (Ekins et al., 2000; Marechal et al., 2006; Ung, Li, Yap, & Chen,
2007; Zientek et al., 2010). Drug metabolism in the liver can convert
some drugs into highly reactive intermediates (Boelsterli, Ho, Zhou, &
Leow, 2006; Kassahun et al., 2001; Park, Kitteringham, Maggs,
Pirmohamed, & Williams, 2005; Walgren, Mitchell, & Thompson,
2005) and this may lead to DILI which is the major reason why drugs
are not approved or are withdrawn from the market post-approval
(Schuster, Laggner, & Langer, 2005). There are some relatively high
level hepatotoxicity models like DILI which may operate via many
mechanisms and there are also receptors and transporters that have
been individually implicated in hepatotoxicity. Several studies make
use of collated sets of compounds (like the Registry of Toxic Effects of
Chemical Substances (RTECS) database) in order to build models. For
example a group at the NIH compared Naïve Bayesian, sequential min-
imal optimization and weighted feature significance algorithms to
predict hepatotoxicity and found the latter method performed the
best with a test set (ROC = 0.67) (Huang et al., 2009). Another data
source is the FDA's Human Liver Adverse Effects Database (HLAED)
which has been used to build k-Nearest Neighbor (kNN) models
which appeared to have reasonable predictivity when used to screen
several external databases (Rodgers, Zhu, Fourches, Rusyn, & Tropsha,
2010).

3.1. Drug induced liver injury models

An early DILI study found that the concordance of an in vitro human
hepatocyte imaging assay technology (HIAT) applied to about 300drugs
and chemicals is about 75% with regard to clinical hepatotoxicity, with
very few false-positives (Xu et al., 2008). Human clinical DILI data can
be used to create a computational model to be used as a prescreen be-
fore in vitro testing. A computational study used classification models
based on linear discriminant analysis (LDA), andmachine learning algo-
rithms (OneR) with 74 molecules (Cruz-Monteagudo, Cordeiro, &
Borges, 2007). These models were then tested with very small numbers
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