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a b s t r a c t

The aim of this work is to assess numerically the influence of track geomaterials variability on the railway
track stiffness. A non-intrusive probabilistic methodology based on in situ cone resistance tests is imple-
mented in a 2D bidimensional finite element model with a modified plane strain condition. This model is
used to estimate the track response to a moving load, which is characterized by the track stiffness mea-
surement rolling stock. Spatial variability is taken into account by considering the cone resistance of each
track layer as independent random fields, each one characterized by a marginal probability density func-
tion obtained from a statistical description of measured in situ data and a theoretical autocorrelation
function. Despite input data variability, results presented much less variability than the input, which
could be explained by both: load repartition over steppers, i.e. homogenization of the track stiffness mea-
sure, and deterministic characteristic of rail pads. Moreover, reduction of variance is observed, which
means that less variance is observed for smaller correlation distances. In addition, a sensitivity analysis
is also performed based on the Fourier Amplitude Sensitivity Test (FAST) and it showed, for the present
case study, that the platform presents the highest first-order sensitivity index for all analyzed cases.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Railway track geomaterials present different scales of complex-
ity and heterogeneity. From the coarse grained ballast material to
the platform, grain size, geometry and nature vary not only be-
tween layers but also inside each layer. Random variations of the
mechanical properties of railway materials have been verified both
in situ and in laboratory tests reported in the literature ([1–4]).
Authors seem to agree that soil properties spatial variability may
contribute to track degradation ([5,6]), although more in situ data
in this sense seems necessary as to consolidate this result.

From a numerical point of view, the impact of material and load
variability have been studied by authors under parametric (as
when dealing with a track transition zone) ([5,7,8]) and perturba-
tion approaches ([9]). Oscarsson [10] has proposed a probabilistic
approach for characterizing the materials’s variability, and more
recently Rhayma et al. [11] used a probabilistic approach in order
to verify the performance over maintenance criteria of different
track maintenance operations. However, on both cases no spatial
variability of soil properties is taken into account and in this sense
railway track layers have been considered as perfectly
homogeneous.

Random field theory provides a mathematical framework as to
take into account spatial variability of a certain parameter follow-
ing both a marginal probability density distribution and a correla-
tion structure. The main features of this theory are developed on
Section 2. It allows to take into account heterogeneities present
on geomaterials in a probabilistic approach rather than parametric.
In the literature, authors have successfully applied this methodol-
ogy in order to perform reliability analysis on different geotechni-
cal domains, such as slope failure ([12,13]), bearing capacity ([14]),
excavation problems ([15]), seismic analysis ([16,17]), among oth-
ers. However, little attention has been paid on the implications and
capabilities of such analysis on the railway field.

In this paper, random field theory is applied on the railway field
in order to establish a probabilistic characterization of the railway
track global stiffness. Global track stiffness is considered as the ra-
tio of the force applied through the wheel/rail contact and the rail
displacement. This measure provides a good overview of the global
response of the track to the train passage.

This paper is organized as follows: Section 2 describes the ran-
dom field methodology and sensitivity analysis applied on this
work; Section 3 describes the data obtained from in situ measure-
ments performed in order to obtain a probabilistic description of
the mechanical properties of railway materials; Section 4 presents
the numerical model of the railway track used in this study; in Sec-
tion 5 the probabilistic analysis of the track stiffness is presented
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and analyzed; a global sensitivity analysis is performed in Section 6
in order to evaluate which input contributed the most on the out-
put’s variance, and finally in Section 7 conclusions are drawn from
the obtained results.

2. Theoretical background

The probabilistic non-intrusive methodology is applied in this
study in order to characterize the railway track stiffness. This ap-
proach is largely used on risk analysis for different scientific and
industrial domains ([18,19]). It is a robust and versatile method,
as it allows to keep the model description in a classic deterministic
way, and concentrate the uncertainties in input variables and their
influence on the output variability. It can be presented as in Fig. 1
([adapted from] [18]). Phase A consists on obtaining a numerical
model which correctly reproduces the physical phenomena in
question. This may be, in some cases, a simplified numerical model
(or surrogate model) which was previously compared and validated
with a more complex model or existing data. The model is often al-
ready available from previous developments. Phase B consists on
obtaining a full probabilistic description of the input variables, in
terms either of random variables or random fields if a spatial
description is available or needed. This probabilistic description
may be obtained either by available data (in situ or laboratory test),
or from expert analysis and previous experience. This step is a cru-
cial one for the probabilistic analysis. Results of numerical simula-
tions will depend strongly on the input variability and correlations
that may exist between them. Once this probabilistic description is
obtained, Phase C consists on propagating the input’s uncertainties
through the model, in order to estimate a certain quantity of inter-
est’s variability. Moreover, failure analysis may be conducted based
on existing or proposed failure thresholds. Finally, conducting both
local and global sensitivity analysis may reveal which inputs impact
the most the quantity of interest’s variability. In this case, the
sources of uncertainty may be reduced to only those that play an
important role on the quantity of interest’s variability.

2.1. Random fields

Many physical processes exhibit complex patterns of variation
on both space and time. These may be characterized by random
fields in order to completely describe the patterns of complex ran-
dom phenomena. Random field theory establishes the basis on pre-
dicting, analyzing and decision making process under incomplete
information about a given medium ([20]).

In this work only second-order invariant fields are considered.
Non-Gaussian fields can be usually obtained from linear or

non-linear translations of a Gaussian random field ([21]). All gen-
erating methods are based on the decomposition of the correlation
structure. Three main classes of methods have been proposed in
order to apply random fields on practical numerical applications:
point discretization, shape function and series expansion methods.
Point discretization methods ([22,17]) are among the most direct
and easy methods to be used with a non-intrusive approach. Very
often finite-element codes allow to give a certain value of the con-
stitutive parameters at each cell, which is a direct transposition of
the obtained values of the random field by a point discretization
method. One important drawback is that this family of methods
leads to discontinuities at element boundaries. Shape function
methods have the advantage of ensuring a continuous description
of the field over the elements, but these must be coded in the finite
element code. Average discretization methods are based on
weighted integrals of the random field, for which a better fit is ex-
pected due to the averaging process ([23]). Series expansion meth-
ods are probably the most complete representation of random
fields, as both invariant and non-invariant fields can be equally
represented. The Karhunen–Loève expansion is an example of this
category. It is based on the covariance eigenfunction basis and is
optimal in the sense of the mean square error resulting from the
truncation after the Mth term ([18]). In this work, the midpoint
method was chosen over the other methods because: (i) it is a
non-intrusive approach and (ii) the random field is considered
invariant and both the probability density function and the corre-
lation structure are known and described by parametric functions.

It consists on the following steps:

1. Define a certain autocorrelation function. It can be either a the-
oretical function (cubic, exponential, squared exponential, tri-
angular, etc.) or an identified structure from available data.

2. Obtain the autocorrelation matrix [R] from the considered auto-
correlation function of the random field. This matrix gives the
correlation coefficient qij between the random variables Xi

and Xj for any two locations yi and yj. It is represented on Eq. (1).
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3. Calculate the eigenvalues and eigenvectors of the autocorrela-
tion matrix [R]. The eigenvectors are a independent uncorre-
lated basis on which the autocorrelation matrix is
decomposed. The eigenvalues represent the variance of each
component of this base.
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Fig. 1. Non-intrusive methodology, adapted from [18].

268 V. Alves Fernandes et al. / Computers and Geotechnics 55 (2014) 267–276



Download English Version:

https://daneshyari.com/en/article/254915

Download Persian Version:

https://daneshyari.com/article/254915

Daneshyari.com

https://daneshyari.com/en/article/254915
https://daneshyari.com/article/254915
https://daneshyari.com

