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a b s t r a c t

In this paper a finite volume (FV) numerical method is implemented to solve a Biot consolidation model
with discontinuous coefficients. Our studies show that the FV scheme leads to a locally mass conservative
approach which removes pressure oscillations especially along the interface between materials with dif-
ferent properties and yields higher accuracy for the flow and mechanics parameters. Then this numerical
discretization is utilized to investigate different sequential strategies with various degrees of coupling
including: iteratively, explicitly and loosely coupled methods. A comprehensive study is performed on
the stability, accuracy and rate of convergence of all of these sequential methods. In the iterative and
explicit solutions four splits of drained, undrained, fixed-stress and fixed-strain are studied. In loosely
coupled methods three techniques of the local error method, the pore pressure method, and constant step
size are considered and results are compared with other types of coupling methods. It is shown that the
fixed-stress method is the best operator split in comparison with other sequential methods because of its
unconditional stability, accuracy and the rate of convergence. Among loosely coupled schemes, the pore
pressure and local error methods which are, respectively, based on variation of pressure and displace-
ment, show consistency with the physics of the problem. In these methods with low number of total
mechanical iterations, errors within acceptance range can be achieved. As in the pore pressure method
mechanics time step increases more uniformly, this method would be less costly in comparison with
the local error method. These results are likely to be useful in decision making regarding choice of solu-
tion schemes. Moreover, the stability of the FV method in multilayered media is verified using a numer-
ical example.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The coupled process of fluid flow and mechanics in geotechnics
was first introduced by Terzaghi in 1924 as a consolidation phe-
nomenon. This theory described one dimensional consolidation
analytically and has since been widely used in practice to calculate
ground settlements [1]. Subsequently in 1941 Biot generalized Ter-
zaghi’s theory to three-dimensional porous media based on a linear
stress–strain constitutive relationship and a linear form of Darcy’s
law [2]. The fluid flow-stress analysis in porous media is of increas-
ing importance today in a diverse range of engineering fields in-
cluded reservoir engineering, biomechanics, and environmental
engineering [3].

As the solutions of Biot system in closed forms are only avail-
able in special cases, numerical methods are commonly used for

solving the respective initial-boundary value problem. However,
numerical approximations based on different forms of the govern-
ing equations and numerical methods can lead to significantly dif-
ferent results for the cases of non-linear flow equations in porous
media [4,5]. In spite of extensive research that has been carried
out for the numerical solution of the Biot equations, there still exist
challenging issues which are as follow. First is the instabilities that
occur because of sharp transient gradients. One of the numerical
methods that suffers from this kind of instability is the standard fi-
nite element method (FEM). The FEM is widely used in solving
poroelasticity systems, especially in the cases when dealing with
complex geometry or adaptive grids [1,6–8]. Although the standard
FEM provides accurate results for the problems with smooth solu-
tions, when strong pressure gradients appear, these methods may
not be stable in the sense that strong nonphysical oscillations oc-
cur in the approximation of the pressure field [9]. To avoid these
difficulties, a staggered finite difference discretization for the poro-
elasticity equations in a single layer was examined by Gaspar et al.
[10]. The approach from [10] was further developed by Naumovich

0266-352X/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compgeo.2013.09.014

⇑ Corresponding author.
E-mail addresses: roza_asadi@mehr.sharif.ir (R. Asadi), ataie@sharif.edu (B.

Ataie-Ashtiani), craig.simmons@flinders.edu.au (C.T. Simmons).

Computers and Geotechnics 55 (2014) 494–505

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier .com/ locate/compgeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compgeo.2013.09.014&domain=pdf
http://dx.doi.org/10.1016/j.compgeo.2013.09.014
mailto:roza_asadi@mehr.sharif.ir
mailto:ataie@sharif.edu
mailto:craig.simmons@flinders.edu.au
http://dx.doi.org/10.1016/j.compgeo.2013.09.014
http://www.sciencedirect.com/science/journal/0266352X
http://www.elsevier.com/locate/compgeo


et al. [11] to the case of multilayered deformable porous media,
based on finite volume discretization. The order of convergence
of this scheme is analyzed by Ewing et al. [12].

One of the numerical methods that is widely used in computa-
tional fluid dynamics problems is finite volume method (FVM). The
main advantage of the FVM is that, it produces accurate discretiza-
tion for systems of partial differential equations with discontinu-
ous coefficients. The corresponding schemes yield local mass
conservation and lead to higher accuracy for stresses and fluxes
at the interfaces [13]. Therefore, it is worthwhile to examine
FVM for addressing the instability problem in numerical solution
of poroelasticity systems.

A second challenge is related to the coupling strategies. There
are four types of strategies for solving the coupled flow and
mechanics problem: fully coupled, iteratively coupled, explicitly
coupled and loosely coupled. In the fully coupled method, the gov-
erning equations of flow and mechanics are solved simultaneously
at each time step [14–16] but in the iterative approach, by parti-
tioning the coupled problem, one of the flow or mechanical sub-
problem is solved first and then the other is solved using the inter-
mediate solution information. This procedure iterates at each time
step until the solutions converge to the fully coupled approach
[17–20]. Explicitly coupled is a kind of iterative scheme where only
one iteration is considered [21]. In loosely coupled, the mechanics
equation is not solved in each time step [22] and after multiple
flow steps are taken, the solution of the mechanical sub-problem
is updated. In this method the number of flow steps depends on
the change of the pore-pressure or displacement and the specified
allowable error [22].

The fully coupled approach is unconditionally stable but it leads
to a large algebraic system that requires huge computational
efforts for large problems. This linear system may be severely ill-
conditioned [23]. To resolve these problems, three sequential
methods including, iteratively, explicitly and loosely coupled
methods are employed. In addition, sequential methods have the
advantage of using existing flow and geomechanics simulators.

Various sequential methods are different in the stability, accuracy
and efficiency behaviors [24]. The loosely coupled approach is an
inexpensive method compared with other types of coupling but
the iterative and then the explicit methods exhibit higher accuracy
than this approach [25]. Due to the need for balance between accu-
racy and efficiency, comprehensive investigations of these strate-
gies are performed in this study.

In the iterative methods, based on the partitioning strategy, dif-
ferent operator splits are considered. In the splits where the
mechanical equation is solved first, the drained and undrained
splits are applied. In a drained split, it is assumed that there is
no pressure change in mechanical equation and this yields condi-
tional stability. On the other hand, in an undrained split, fluid mass
remains constant during the mechanical step. The undrained split
is unconditionally stable except for an incompressible system in
which this operator split is not convergent [17]. In other iterative
schemes, which have been applied in reservoir engineering, the
flow problem is solved first [25,26]. Fixed-strain and fixed-stress
methods are two operator splits of this type of sequential schemes.
In a fixed-strain split the rate of total volumetric strain is consid-
ered constant during the flow calculation while in a fixed-stress
split the rate of total volumetric stress is a constant parameter.
In a fixed-strain split conditional stability occurs but a fixed-stress
split provides unconditional stability even if the system is incom-
pressible [18]. Examples of models based on the iterative coupled
approaches are given by Jha and Juanes [19] who have investigated
sequential schemes by employing a FEM for the mechanical prob-
lem and a mixed FEM for the flow problem. Also Kim et al. ana-
lyzed stability and convergence of iterative methods based on a
FEM and a FVM for the mechanical and the flow problems, respec-
tively [24,17,18].

In the explicit approach, there is no iteration in each time step
to ensure convergence of the solution and there is only single pass
between mechanics and flow equations. As iterative methods, one
can use all operator splits described above: the drained, undrained,
fixed-strain and fixed-stress splits [24].

Nomenclature

b body force (M L�2 T�2)
c consolidation coefficient (L2 T�1)
cbr solid grain compressibility (M�1 L T2)
cM vertical uniaxial compressibility (M�1 L T2)
er relative error of local error method
erg goal local error
f flow source or sink (T�1)
g gravitational acceleration (L T�2)
h size of control volume (L)
�K hydraulic conductivity tensor (L T�1)
Ku undrained bulk modulus (M L�1 T�2)
L length of domain (L)
m fluid content
M Biot modulus (M L�1 T�2)
N number of nodes
p fluid pore pressure (M L�1 T�2)
PL overburden (M L�1 T�2)
t time (T)
T time interval (T)
u displacement (L)
v Darcy’s velocity (L T�1)
a Biot coefficient
b fluid compressibility (M�1 L T2)

C frontier of the domain of coupled partial differential
equations

e strain
2 acceptable tolerance for the L2-norm of two iterative

solutions in one time step
h time weighted factor
j harmonic averaging of �K=qg over the interval (xi-1, xi)

(M�1 L3 T)
k Lame constant (M L�1 T�2)
l shear modulus (M L�1 T�2)
m harmonic averaging of kþ 2l over the interval (xi�0.5, -

xi+0.5) (M L�1 T�2)
n interface (L)
q fluid density (M L�3)
r effective stress (M L�1 T�2)
rt total mean stress (M L�1 T�2)
s time step size (T)
/ porosity
v spatial weighted factor for location of interface
�xp spatial grids for pressure
�xu spatial grids for displacement
xT time grids
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