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Abstract

Biochemical processes of tissue growth lead to production of new proteins, cells, and other material particles at the microscopic level.
At the macroscopic level, growth is marked by the change of the tissue shape and mass. In addition, the appearance of the new material
particles is generally accompanied by deformation and, consequently, stresses in the surrounding material. Built upon a microscopic toy-
tissue model mimicking the mechanical processes of mass supply, a simple phenomenological theory of tissue growth is used in the pres-
ent work for explaining residual stresses in arteries and studying stresses around growing solid tumors/multicell spheroids. It is shown, in
particular, that the uniform volumetric growth can lead to accumulation of residual stresses in arteries because of the material anisot-
ropy. This can be a complementary source of residual stresses in arteries as compared to the stresses induced by non-uniform tissue
growth. It is argued that the quantitative assessment of the residual stresses based on in vitro experiments may not be reliable because
of the essential stress redistribution in the tissue samples under the cutting process. Concerning the problem of tumor growth, it is shown
that the multicell spheroid or tumor evolution depends on elastic properties of surrounding tissues. In good qualitative agreement with
the experimental in vitro observations on growing multicell spheroids, numerical simulations confirm that stiff hosting tissues can inhibit

tumor growth.
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1. Introduction

Understanding growth of living tissues is of fundamental
theoretical and practical interest. Analytical models of
growth of both plant and animal tissues can predict the
evolution of the tissue, which may improve the treatment
of pathological conditions and offer new prospects in tis-
sue engineering. Biological or biochemical mechanisms of
growth are not well understood although plenty of scenarios
exist in the biological literature. There is no doubt that
biochemistry is the driving force of tissue growth. Under-
standing the biochemistry of growth is most desirable.
Biochemistry can explain why a tissue grows. This is not
enough, however. It is also necessary to know how a tissue
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grows. The latter means macroscopic description in terms
of the macroscopically measurable parameters. There is
no shortage of macroscopic models of soft tissue growth
[1-18]. However, the mathematical apparatus of the existing
approaches is rather complicated and it includes variables
that are difficult to interpret in simple terms and to assess
in measurements, such as the cofactors in the multiplicative
decomposition of the deformation gradient or the partial
stresses and tractions in the mixture theories. This complex-
ity requires an additional effort for the careful experimental
calibration of the theories as, for example, in the case of the
cartilage growth considerations by Klisch et al. [19,20].

In the present work, a continuum mechanics framework
for modeling growth of living tissues is used, which does
not include internal variables [21,22].> Moreover, this

2 Guillou and Ogden [23] present an alternative theory of soft tissue
growth without the internal variables.
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theory is driven by a simple microstructural model of mate-
rial supply that motivates the balance and constitutive
equations. Two applications of the growth theory pre-
sented are considered.

First, the formation of residual stresses in arteries under
the restriction of purely genetic and uniform mass supply is
studied. It is shown that the arterial anisotropy can play the
crucial role in the appearance and accumulation of stresses
in growth. This is complementary to a more traditional
point of view, which attributes residual stresses to non-uni-
form (differential) growth. We emphasize that the quantita-
tive assessment of the residual stresses in arteries would
require in vivo experiments. The existing in vitro experiments
may lead to inaccurate estimates of residual stresses because
of the necessity to cut the arterial pieces. The cutting process
is accompanied by a redistribution of stresses, which can
essentially affect their estimates. We propose a possible
experiment in order to emphasize the stress redistribution
issue in the in vitro tests.

Second, we apply the theory to the study of stresses
around growing solid tumors. A growing tumor may press
neighbor tissues and lead to their remodeling and necrosis
or, ultimately, to the failure of organs to carry out their reg-
ular functions. For example, expanding tumors can initiate
the collapse of immature blood vessels formed during the
angiogenic phase, and the inflation and rupture of capsules,
membranes and ducts the tumor grows into. Another
example is an expanding brain tumor, which can deform
brain areas responsible for various kinds of human activity
and disturb the normal action of the organism. Thus, it
can be important to know what is the expected tumor shape
and mass for planning the date and strategy of operative
invasion. A simplistic description of tumor development is
attributed to Winsor [24], who adapted Gompertz’s [25]
empirical formula for modeling tumor growth: In(In(V/
Vo)) = —vt + Viax/ Vo, where V is a measure of tumor size,
V, the initial size, and V.4 the final size. The rate of cell
proliferation is v and ¢ is time. Evidently, this formula
accounts neither for tissue elasticity nor for material supply.
However, recent experiments with tumor cell spheroids
demonstrate the importance of these issues and the defi-
ciency of the Gompertz simple formula. In particular, mim-
icking tumor development in vivo, Helmlinger et al. [26]
considered in vitro growth of multicell tumor spheroids
embedded in agarose gels. Spheroids were cultured in gels
of increasing agarose concentration, thereby increasing
the stiffness of the embedding matrix. It was observed that
tumor growth was inhibited by the increasing gel stiffness.
Evidently, this result emphasizes the role of the hosting tis-
sue in the tumor growth process in vivo. Mathematical mod-
eling of solid tumor growth has a long history [27]; however,
the main emphasis of the research has been on problems of
fluid transport and chemical reactions during the process of
tumor formation [28—44]. Elasticity of the tumor/multicell
spheroid was recently considered by Ambrosi and Mollica
[45,46] who used a rather abstract approach, typical of

the theories of soft tissue growth when the deformation gra-
dient is decomposed into growth and elastic cofactors that
correspond to the incompatible ‘pure growth’ of the mate-
rial and the elastic deformation providing the final material
compatibility. Contrary to Refs. [45,46] we will use a
growth theory that does not introduce internal variables
and that can be directly calibrated in experiments. We will
show that stiff hosting tissues can inhibit tumor growth in
a good qualitative agreement with the in vitro observations
of growing multicell spheroids.

2. Methods
2.1. Governing equations

The assumption that continuous deformation and mass
flow can describe the mechanics of growing living bodies
is central to further development. To make this assumption
sound, the geometry of growth should be analyzed qualita-
tively. A sharp distinction between the real physical mate-
rial, i.e., material particles comprising continuum, and the
mathematical concept of material point should be kept in
mind. This distinction is illustrated in Fig. 1, where material
deformation-growth is considered on different length scales.
On the macroscopic scale, we assume that a material body
can be divided into an infinite set of material points. It is
assumed that position X in the physical space can be
ascribed to every material point before growth-deforma-
tion. These material points form the material continuum.
It is further assumed that during growth-deformation every
point moves to a new position x = y(X) preserving the com-
patibility of the body. This mapping is smooth to the neces-
sary degree. Moreover, it is assumed that the mapping is
one-to-one, i.e., the ‘infinite number’ of material points is

Body Q
EEEEEN
Deformation-growth X (X) ::::::
ﬁ EEEEEE
EEEEENR
EEEEED

| Material point x |

Division

L ] (]
oo 0o 00 o o
ccces Mesoscale 'o:o'o:o:
L] o0
AN :‘.e/o'o o
o0 ° O. .O. *
o .0;\.6\.

Diffusion

| Material particles, cells, molecules... |

The ‘number’ of material points is not changing.
The mass of the point is changing.

Fig. 1. Multiscale mechanics of growth.
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