Construction and Building Materials 107 (2016) 52-57

Contents lists available at ScienceDirect

Construction and Building Materials

journal homepage: www.elsevier.com/locate/conbuildmat

Quantitative analysis of pure triclinic tricalcium silicate and C–S–H gels by ²⁹Si NMR longitudinal relaxation time

I.F. Sáez del Bosque^{a,*}, M. Martín-Pastor^b, I. Sobrados^c, S. Martínez-Ramírez^{a,d}, M.T. Blanco-Varela^a

^a Instituto de Ciencias de la Construcción Eduardo Torroja, (IETcc-CSIC), c/ Serrano Galvache 4, 28033 Madrid, Spain

^b Unidad de Resonancia Magnética, RIAIDT, edif. CACTUS Universidad de Santiago de Compostela, Campus sur, 15782 Santiago de Compostela, Spain

^c Instituto de Ciencias de Materiales de Madrid (ICMM-CSIC), c/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain

^d Instituto de Estructura de la Materia (IEM-CSIC), c/ Serrano 121, 28006 Madrid, Spain

HIGHLIGHTS

• The ²⁹Si longitudinal relaxation time (T_1) for the anhydrous C₃S was studied.

• The T_1 for the remnant C₃S in hydrated pastes and C–S–H was also studied.

• The anhydrous C_3S has considerably long T_1 .

• The remnant C_3S in hydrated pastes has considerably shorter ²⁹Si T_1 than the anhydrous C_3S .

• The T_1 of the signals of the remnant C_3S and C–S–H gel in hydrated pastes are considerably similar.

ARTICLE INFO

Article history: Received 8 June 2015 Received in revised form 21 December 2015 Accepted 22 December 2015 Available online 5 January 2016

Keywords: Tricalcium silicate C-S-H gel ²⁹Si NMR Longitudinal relaxation time

ABSTRACT

²⁹Si magic angle spinning nuclear magnetic resonance (²⁹Si MAS NMR) has been commonly used to monitor the hydration degree of tricalcium silicate (C_3S) and the structure of the calcium silicate hydrate known as C–S–H gel generated during their hydration, which is responsible for the strength and durability of cement pastes. The present study is aimed to measure the longitudinal relaxation times (T_1) for the different types of Si in the structure of anhydrous triclinic C_3S , the remnant C_3S in pastes after a number of hydration days and the hydrated product (C–S–H gel). Results showed that the longitudinal relaxation times of the ²⁹Si signals of C_3S remaining after hydration are considerably shorter than the anhydrous C_3S phase of the starting material; an effect that was interpreted as an extra contribution of ²⁹Si–¹H dipolar relaxation provided by the surrounding water molecules. Interestingly, the shorter T_1 of the remaining non-hydrated C_3S which is comparable to the C–S–H gel permits a much faster acquisition of quantitative ²⁹Si MAS spectra.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

C₃S synthesized from a stoichiometric mix of silica gel and calcium oxide (originated from calcined calcium carbonate) at 1450 °C following rapid cooling to ambient temperature leads to triclinic T_1 polymorph. Hydrated tricalcium silicate (T_1) forms portlandite Ca(OH)₂ and a calcium silicate hydrate known as C–S–H gel,

* Corresponding author.

the substance primarily responsible for the mechanical strength of cement. Since the gel is amorphous or scantly crystalline, the technique most commonly used in these hydration studies is ²⁹Si magic angle spinning nuclear magnetic resonance (MAS NMR).

Substantial information regarding the characterization of the C– S–H gels has been obtained by ²⁹Si MAS NMR in hydrated samples of ordinary Portland cement (OPC), white Portland cement (WPC) or tricalcium silicate (C₃S) [1–7]. However, very few studies have addressed the ²⁹Si longitudinal relaxation in silicate phases because some solid silicates or alumino-silicates have long relaxation times (typically >30 min for samples depleted of paramagnetics [8]). Knowing the longitudinal (or spin–lattice) relaxation time of each ²⁹Si signal (T_1) in the ²⁹Si MAS spectrum is crucial to establishing a suitable value of the scan duration, which is

Abbreviations: FT, Fourier transform; MAS, magic angle spinning; NMR, nuclear magnetic resonance; FID, free induction decay; T_1 , longitudinal or spin-lattice relaxation time; d_1 , inter-scan relaxation delay; d_1^{\min} , minimum required inter-scan relaxation delay; LB, line-broadening factor used for the apodization of the FID with an exponential function.

E-mail address: isa.f.saez@gmail.com (I.F. Sáez del Bosque).

approximately expressed by the parameter d_1 (the FID acquisition time is typically ~40 ms and is negligible compared to d_1 in this type of samples), that guarantee a quantitative NMR spectrum [9]. Thus, a better understanding of the relaxation mechanisms would be of considerable interest to ensure that the scan duration (d_1) in the experiment is long enough to obtain quantitative evaluation of the spectra and insights into specific framework interactions. The scan duration in a ²⁹Si MAS spectrum and other NMR experiment relying in direct polarization and detection of the nucleus, should be at least three to five times longer than the T_1 of the signal to ensure that after several scans of the experiment, its integral (area) is quantitative (i.e. proportional to the number of nuclei generating the resonance and its concentration or abundance in the sample).

A typical problem to set the NMR quantitative scan conditions in solid silicates is the high variability of their ²⁹Si T_1 . They range from milliseconds to minutes, depending on the chemical environment [10]. For instance, solid silicates depleted of paramagnetic ions have considerably long T_1 and the minimum scan duration typically required to obtain a quantitative spectrum is on the order of minutes. This, together with the large number of experimental repetitions required to record a sufficiently sensitive spectrum (i.e. with good signal to noise ratio), translates into long spectrometer measuring times.

To measure longitudinal relaxation times T_1 three different methods have been proposed, namely inversion-recovery [11], variable delay Bloch decay also known as progressive saturation [9,12,13], and saturation-recovery [13,14]. The three methods have been recently evaluated for its application to ²⁹Si NMR of cements [13] and concluded that the saturation-recovery offers the best balance of theoretical simplicity and spectral tractability with minimal disadvantage. Besides, it is also the method of choice to measure T_1 for samples with a broad chemical shift range as it occurs for certain spin ½ heteronuclei such as ¹³C, ¹⁹F, ²⁹Si, ²⁰⁹Pb and others, and in general for many quadrupolar nuclei.

The T_1 values of ²⁹Si have been determined in anhydrous silicate phase, alite (tricalcium silicate) and belite (dicalcium silicate), for different types of commercial Portland cements and milled clinkers. The T_1 's reported are consistently lower in alite than in belite and the content of paramagnetic ions (Fe₂O₃, NiCl₂, Mn₂O₃, etc.) can considerably reduce their T_1 [13,15]. Thus, the reported T_1 for alite range from 0.24 to 0.067 s and for belite from 8.2 to 0.54 s [5,16–18]. The T_1 are much higher for white Portland cement (WPC) than ordinary Portland cement (OPC) because the former has a lower content of bulk Fe₂O₃.

To the best of our knowledge there are no studies of the ²⁹Si longitudinal relaxation time in pure anhydrous triclinic C₃S, and these measurements would be useful to assess quantitative conditions in the ²⁹Si MAS spectrum. Thus, the present study is aimed to ascertain conditions for fast acquisition and quantitative recording ²⁹Si MAS spectra by measuring ²⁹Si longitudinal relaxation times (T_1) for the different materials: anhydrous triclinic C₃S, the remnant C₃S in C₃S pastes after a number of days of hydration and the hydrated product (C–S–H gel).

2. Experimental

2.1. Materials and sample preparation

Synthetic tricalcium silicate (C₃S) was prepared by solid-state reaction. The synthesised tricalcium silicate has a low BET specific surface, $0.427 \pm 0.003 \text{ m}^2/\text{g}$. The DTA, XRD-Rietveld analysis and ²⁹Si MAS NMR results for the synthesised C₃S (showed elsewhere [19]) confirmed both the purity of the C₃S and its triclinic crystal modification, *T*₁.

The C₃S was hand-mixed for 3 min with de-ionized water at a w/s ratio of 0.425 and subsequently cured in containers at 25 °C and a RH of 100% for 28 days (paste A28d). Hydration was stopped with acetone and subsequent vacuum drying for around 1.5 h.

2.2. Techniques

2.2.1. 29Si MAS NMR

The experimental conditions for all solid state NMR experiments were as follows: Bruker AVANCE-400 (9.4 *T*) spectrometer; ²⁹Si operating frequency was 79.4 MHz; double resonance ¹H/X MAS solids probe with 7-mm ZrO₂ rotors; kaolin as secondary reference for ²⁹Si chemical shifts (δ = –91.2 ppm referred to TMS, δ = 0 ppm); software for spectrum processing and quantitative integration via signal integration was MestRe-C v3.9 [20].

2.2.1.1. Measurement of ²⁹Si T_1 relaxation times: 1D ²⁹Si MAS saturation-recovery experiment. Longitudinal ²⁹Si relaxation times (T_1) were measured for both the anhydrous C_3S and the A28d samples with the one-dimensional ²⁹Si MAS saturation-recovery pulse sequence of Fig. 1. The sequence incorporates a saturation-comb that is followed by a variable delay (τ) prior to the excitation pulse of the 1D ²⁹Si MAS experiment.

To avoid potential errors in the apparent equilibrium magnetization (I_0) which are crucial for this experiment, the ²⁹Si hard $\pi/2$ pulse was calibrated carefully with the reference kaolin sample. A conveniently short hard $\pi/2$ pulse of 7 µs was used both for the saturation pulses and the observation pulse of the experiment which covers the full range of spectral signals without significant RF offset effects. The saturation-comb part consisted in a train of 25 $\pi/2$ hard saturation pulses separated by delays of 30 ms (delay d_{20} in Fig. 1). The delay fulfills the required condition $T_2^* << d_{20} < T_1$ for the applicability of the experiment.

For the anhydrous C_3S a series of spectra were obtained with the following values of the variable delay (τ): 1, 2, 4, 6, 10, 20, 40, 60, 100, 150, 200, 250, 300, 350, 400, 450 and 500 s. For the 28 day hydrated paste the values of τ were the same as for the C_3S with the exception of the last two listed that were omitted. Each spectrum of the series was acquired with 16 scans and the inter-scan relaxation delay d_1 was set to 60 s to prevent excessive probe and sample heating.

2.2.1.2. 1D ²⁹Si MAS study at two inter-scan relaxation delays. Two one-dimensional ²⁹Si MAS NMR spectra were acquired for the 28 day hydrated paste of C₃S at 25 °C. Broad-band proton decoupling was applied during the FID (free induction decay) acquisition with the TPPM (Two Pulse Phase Modulation) scheme using a field strength ($\gamma B_1/2\pi$) of 25 kHz. Other conditions were: 7 µs for the $\pi/2$ excitation pulse; MAS spinning rate of 5 kHz; 128 scans; acquisition time (*at*) of 100 ms; relaxation delay (*d*₁), 60 s for the first spectrum and 615 s for the second.

To simplify the explanation of the optimal conditions for recording quantitative ²⁹Si spectra in this type of samples, in the following discussion the total scan duration is regarded to be due exclusively to the relaxation delay between scans, symbolised as d_1 . The contribution of other parameters such as pulse duration and FID acquisition time can be assumed to be negligible in comparison.

3. Results and discussion

3.1. Determination of 29 Si spin lattice relaxation time, T_1 of tricalcium silicate and C–S–H gel

The longitudinal relaxation times (T_1) for the ²⁹Si signals were determined with the 1D saturation-recovery ²⁹Si MAS experiment. The absolute value of the integral of each signal in the spectrum obtained at a certain value of the delay τ , $l(\tau)$, was non-linear fitted to the monoexponential Eq. (1) to determine the T_1 [14].

$$I(\tau) = I_0 \cdot [1 - \exp(-\tau/T_1)] + x_0 \tag{1}$$

where x_0 is an offset due to the experimental difficulty to achieve complete saturation at $\tau = 0$.

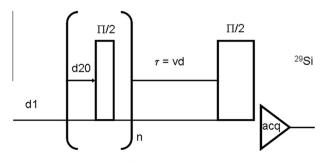


Fig. 1. Pulse sequence of the 1D ²⁹Si MAS saturation-recovery experiment used to measure longitudinal relaxation times in the cement pastes.

Download English Version:

https://daneshyari.com/en/article/256237

Download Persian Version:

https://daneshyari.com/article/256237

Daneshyari.com