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Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with
proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of
airway inflammation. In this study, we characterized the transcriptional and posttranscriptional events that
regulate COX-2 expression in a human bronchial epithelial cell line BEAS-2B exposed to Zn2+. Zn2+ exposure
resulted in pronounced increases in COX-2 mRNA and protein expression, which were prevented by
pretreatment with the transcription inhibitor actinomycin D, implying the involvement of transcriptional
regulation. This was supported by the observation of increased COX-2 promoter activity in Zn2+-treated
BEAS-2B cells. Mutation of the cAMP response element (CRE), but not the κB-binding sites in the COX-2
promoter markedly reduced COX-2 promoter activity induced by Zn2+. Inhibition of NFκB activation did not
block Zn2+-induced COX-2 expression. Measurement of mRNA stability demonstrated that Zn2+ exposure
impaired the degradation of COX-2 mRNA in BEAS-2B cells. This message stabilization effect of Zn2+ exposure
was shown to be dependent on the integrity of the 3′-untranslated region found in the COX-2 transcript.
Taken together, these data demonstrate that the CRE and mRNA stability regulates COX-2 expression induced
in BEAS-2B cells exposed to extracellular Zn2+.

Published by Elsevier Inc.

Introduction

Cyclooxygenase (COX) is a heme-containing enzyme that catalyzes
two sequential enzymatic reactions: the bis-oxygenation of arachi-
donic acid leading to the production of prostaglandin G2 (PGG2) and
the reduction of 15-hydroperoxide of PGG2, leading to the formation
of PGH2, a precursor of all PGs, thromboxanes, and prostacyclins, in
concert with a series of cell-specific isomerases (Smith et al., 2000).

Three COX isoforms, COX-1, COX-2, and COX-3, have been identified in
mammals (Chandrasekharan et al., 2002). COX-1 is expressed consti-
tutively in most tissues and appears to be responsible for the pro-
duction of PGs that modulate physiological functions. COX-3 is an
alternatively spliced form of COX-1, expressed primarily in brain and
heart as a constitutive enzyme. In contrast, COX-2 is expressed at low
or undetectable levels inmost tissues and cells under basal conditions,
but is rapidly inducible by a variety of stimuli such as lipopolysacchar-
ide (LPS), inflammatory cytokines, growth factors, ultraviolet radia-
tion, and chemicals (Fu et al., 1990; Zhang et al., 1998; Subbaramaiah
et al., 2000; Chang et al., 2003; Huh et al., 2003).

The COX-2 gene is mapped to human chromosome 1q25.2-q25.3,
approximately 8.3 kb in length with 10 exons, and is transcribed
as a 4.4 kb mRNA (Tanabe and Tohnai, 2002). The human COX-2
5′-flanking region contains a canonical TATA box and several func-
tionally important enhancer elements including a cyclic AMP response
element (CRE), E box and activator protein 1 (AP-1) regulatory ele-
ment complex situated very close to TATA, a CCAAT/enhancer binding
protein (C/EBP) site and two κB sites (Tazawa et al., 1994). The pro-
inflammatory stimuli can induce binding of different transcription
factors to their specific DNA-binding sites in a cell type- and stimulus-
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specific fashion. The transcription factors that bind and activate COX-2
transcription involve C/EBPβ and C/EBPδ for the nuclear factor
interleukin-6 (NF-IL-6) elements, AP-1, activating transcription factor
(ATF) and CRE-binding protein (CREB) for the CRE element, and
upstream stimulatory factor 1 (USF-1) for the E box (Murakami and
Kudo, 2004). Posttranscriptional events also play an important role in
modulating COX-2 mRNA levels (Dannenberg et al., 2005). The first 60
nucleotides of the 3′-untranslated region (UTR) of COX-2 mRNA are
highly conserved and contain multiple copies of the regulatory
sequence AUUUA. These well-known AU-rich elements (AREs),
present within the 3′-UTRs of many proto-oncogene and cytokine
mRNAs, confer posttranscriptional control of expression by acting as a
mRNA instability determinant or as a translation inhibitory element
that can affect both mRNA and protein translation (Caput et al., 1986;
Xu et al., 1997). An ARE element within the 3′-UTR of COX-2mRNA has
been identified that can control both mRNA decay and protein
translation (Dixon et al., 2000, 2001).

Increased COX-2 protein expression has been implicated in the
pathogenesis of lung diseases characterized by chronic airway in-
flammation, including asthma, chronic bronchitis, cystic fibrosis, and
bronchiectasis (Ermertet al.,1998;Ogumaet al., 2002). Expressionof the
COX-2 gene has been shown in human airway epithelial cells exposed to
exogenous stimuli, such as air-borne residual oil fly ash (Samet et al.,
2000), hydrochloric acid (Bonnans et al., 2006), peroxisomeproliferator-
activated receptor-gamma agonists (Patel et al., 2005), respiratory
syncytial virus and Streptococcus pneumoniae infection (Liu et al., 2005;
N'Guessan et al., 2006). Zinc (Zn) is an essential micronutrient involved
in structural and regulatory cellular functions of a large number of
proteins (Vallee and Falchuk, 1993). Zn is also a ubiquitous contaminant
in ambient and occupational settings. It exists as a combustion-derived
metal associated with ambient particulate matter (PM) and may
contribute to the adverse health effects of ambient PM inhalation
(Horner, 1996; Adamson et al., 2000). In this study, the regulation of
COX-2 expression was studied in a human bronchial epithelial cell line
BEAS-2B exposed to Zn2+. We report here that Zn2+ exposure increases
COX-2 expression through the CRE site located in the COX-2 promoter
region and stabilization of COX-2 mRNA.

Methods

Materials and reagents. American Chemical Society-grade zinc sulfate, Triton X-100,
and polyacrylamidewere purchased from Sigma Chemical Co. (St. Louis, MO). SDS-PAGE
supplies such as molecular mass standards and buffers were from Bio-Rad (Richmond,
CA). Anti-human COX-2 polyclonal antibody was obtained from Cayman Chemical (Ann
Arbor, MI). β-actin antibody was purchased from USBiological (Swampscott, MA).
Horseradish peroxidase (HRP)-conjugated goat anti-rabbit or goat anti-mouse IgG was
obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Actinomycin D (Act D), Bay11-
7082 and Dup-697were purchased from EMD Biosciences, Inc. (San Diego, CA). FuGENE
6 transfection reagent was obtained from Roche Diagnostics Corporation (Indianapolis,
IN). Chemiluminescence reagents were from Pierce Biotechnology (Rockford, IL).

Cell culture and in vitro exposure. BEAS-2B (subclone S6) cells were obtained from Drs.
Curtis Harris and John Lechner (National Institutes of Health). The BEAS-2B cell line was
derived by transforming human bronchial cells with an adenovirus 12-simian virus 40
construct (Reddel et al., 1988). BEAS-2B cells (passages 70–80) were grown on tissue
culture-treated Costar plates in keratinocyte basal medium (KBM) supplemented with
30 μg/ml bovine pituitary extract, 5 ng/ml human EGF, 500 ng/ml hydrocortisone,
0.1 mM ethanolamine, 0.1 mM phosphoethanolamine, and 5 ng/ml insulin. Cells were
placed in KBM (without supplements) for 20–22 h before further treatment.

A suspension of 50 mM zinc sulfate (Zn2+) was prepared in water and used as a
stock for dilution into KBM, as described previously.

Immunoblotting. BEAS-2B cells were treated with Zn2+, washed twice with ice-cold
phosphate-buffered saline (PBS) and then lysed in RIPA buffer (1× PBS, 1% Nonidet P-40,
0.5% sodium deoxycholate, 0.1% SDS, and protease inhibitors: 20 μg/ml leupeptin,
20 μg/ml aprotinin, 0.5 mM phenylmethylsulfonyl fluoride, 200 μM sodium orthova-
nadate, and 20 mM sodium fluoride). Cell lysates were subjected to SDS-PAGE. Proteins
were transferred onto nitrocellulose membrane. Membranes were blocked with 5%
nonfat milk, washed briefly, incubated with primary antibody at 4 °C overnight,
followed by incubating with corresponding HRP-conjugated secondary antibody for 1 h
at room temperature. Immunoblot images were detected using chemiluminescence
reagents and the Gene Gynome Imaging System (Syngene, Frederick, MD).

Real-time reverse transcriptase/polymerase chain reaction (RT-PCR). BEAS-2B cells
grown to confluence were exposed to Zn2+. Cells were washed with ice-cold PBS and then
lysed with TRIZOL reagent (Invitrogen Corporation, Carlsbad, CA). Total RNA was isolated
according to manufacturer-provided instructions. RNA (200 ng) was reverse transcribed
into cDNA. Quantitative PCR was performed using Platinum Quantitative PCR SuperMix-
UDG (Invitrogen Corporation, Carlsbad, CA) and an ABI Prism 7700 sequence detector
(Applied Biosystems, Foster City, CA). COX-2 mRNA levels were normalized using the
expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA. Relative
amounts of COX-2 and GAPDH mRNA were based on standard curves prepared by serial
dilution of cDNA from human BEAS-2B cells. The following oligonucleotide primers and
probeswere employed: COX-2: 5′-GAATCATTCACCAGGCAAATTG-3′ (sense), 5′-TCTGTA
CTG CGG GTG GAA CA-3′ (antisense), 5′-TCC TAC CAC CAG CAA CCC TGC CA-3′ (probe);
GAPDH: 5′-GAA GGT GAA GGT CGG AGT C-3′ (sense), 5′-GAA GAT GGT GAT GGG ATT TC-
3′ (antisense), 5′-CAA GCT TCC CGT TCT CAG CC-3′ (probe).

Site-directed mutagenesis. Mutations in three COX-2 promoter sites were generated by
PCR with the QuikChange Site-directed Mutagenesis kit (Stratagene, La Jolla, CA). Briefly,
the PCR reaction was carried out in 50 μl of solution containing 50 ng of COX-2 promoter
reporter constructs (pGL2COX-2-luc) as a template, 10 μM of mutagenic oligonucleotide
primers,100 μMdNTPs,10mMKCl, 6mM(NH4)2SO4, 20mMTris–HCl, pH8.0, 2mMMgCl2,
0.1% Triton X-100, 10 μg/ml BSA and 2.5 units of Pfu Turbo DNA polymerase. The PCR
scheme consists of 2min incubation at 95 °C, followed by 18 cycles of 95 °C for 1min, 55 °C
for 1min, 68 °C for 8min, and a final incubation at 72 °C for 10min. Then 10 units ofDpn I
was added to the PCR solution and incubated for 30 min at 37 °C to degrade the parent
template strand. The remaining plasmid DNAwas used to transform E. coli XL1-Blue cells.
Thesemutation sites includedoneCRE site (−62), and twoNFκB-bindingelements,NFκB-1,
−449 and NFκB-2, −225. All mutation constructs were confirmed by sequencing. The
following primers were used (the mutated bases are underscored) in the mutagenesis
reactions: (a) COX-2 promoter CRE site, 5′-GAA ACAGTC ATT TGA GCT CAT GGG CTT GGT-
3′; (b) COX-2promoterNFκB-1 site, 5′-CGGCGGGAGAGGCGATTCGCTGCGCCCCCGG-3′;
(c) COX-2 promoter NFκB-2 site, 5′-GAC AGG AGA GTG GCG ACT ACG CCC TCT GCT CC-3′.

mRNA decay assay. mRNA decay assay was conducted according to the previously
published procedure. Specifically, BEAS-2B cells were treated with a combination of
20 ng/ml TNFα, 5 ng/ml IL-1β, and 10 ng/ml interferon γ (IFN γ) for 3 h to induce COX-2
mRNA expression. The mediumwas then decanted and cells were washed with PBS for
three times. Fresh medium containing Act D (10 μg/ml) was replaced and incubated for
30min before further treatment with PBS or 50 μMZn2+. At different time intervals (0, 1,
2, and 4 h), cells were collected for RNA preparation. RNA was examined by RT-PCR
analysis. The levels of COX-2 mRNA were normalized for the intensity of the GAPDH
signals as described previously.

Transient gene transfection. BEAS-2B cells were grown to 40–50% confluence prior to
transfection with COX-2 promoter reporter constructs (pGL2COX-2-luc), the COX-2
promoter reporter constructs mutated at one CRE site or two NFκB-binding sites using
FuGENE 6 transfection reagent, respectively, according to the manufacturer's instruc-
tions. pSV-β-galactosidase constructs were cotransfected. 24 h after transfection,
cultures were incubated with KBM overnight. The cells were then treated with Zn2+

before being lysedwith lysis buffer. Detection of luciferase and β-galactosidase activities
was conducted using the Dual-Light chemiluminescent reporter gene assay system from
Tropix and anAutoLumat LB953 luminometer (BertholdAnalytical Instruments, Nashua,
NH). Luciferase activity was estimated as luciferase count/β-galactosidase count.

Luciferase expression constructs ligated to the full-length COX-2 3′-UTR (luc+3′-UTR),
the COX-2 ARE (luc+ARE), and luciferase constructs without a 3′-UTR (lucΔ3′-UTR) were
obtained from Dr. Dan A. Dixon, University of Utah. Similarly, these constructs were
cotransfected into BEAS-2B cells with pSV-β-galactosidase constructs as described
previously. Luciferase activity was estimated as luciferase count/β-galactosidase count.

Electrophoretic mobility shift assay (EMSA). BEAS-2B cells were stimulated with 50 μM
Zn2+ or 100 ng/ml TNFα for 2 h, respectively. Cells were washed twice with cold PBS.
Nuclear proteins were extracted with a Nuclear/Cytosol Fractionation kit (Biovision Inc.,
Mountain View, CA). EMSA was conducted using an EMSA Gel-Shift kit (Panomics Inc.,
Fremont, CA) according to the manufacturer's instructions. Briefly, nuclear proteins
(10 μg) were incubated with 2 μl of 5× binding buffer, 1 μl of poly d(I-C) (1 μg/ml), 1 μl of
cold unlabeled or biotin-labeled CRE probe (10 ng/ml), and 5 μl of distilled water at
room temperature for 30 min. After mixed with 1 μl of loading dye, the samples were
subjected to electrophoresis in 0.5× TBE buffer. The protein–oligos complexes were
transferred onto nylon membrane. The images were developed using the detection
buffer and substrates provided by the manufacturer, and detected using chemilumi-
nescence reagents and the Gene Gynome Imaging System as described previously. The
cold probe and positive nuclear proteins were provided with the kit.

Measurement of prostaglandin E2 (PGE2). BEAS-2B cells grown to confluence were incu-
bated with 50 μM Zn2+ for 6 h. PGE2 in the supernatants of stimulated BEAS-2B cells was
quantified by enzyme linked immunosorbent assay (ELISA) (R&D systems, Minneapolis,
MN) following themanufacturer's instructions.Meanwhile,Dup-697 (20 μM), the inhibitor
ofCOX-2enzymeactivity,wasaddedwithZn2+ to test its inhibitoryeffectonCOX-2activity.

Statistics. Data are presented as means±SE. COX-2 mRNA and cotransfection data
were evaluated using nonparametric paired t tests with the overall α level set at 0.05.
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