ELSEVIER

Contents lists available at ScienceDirect

Construction and Building Materials

journal homepage: www.elsevier.com/locate/conbuildmat

Investigating the fatigue endurance limit of HMA mixture using RDEC approach

Alireza Khavandi Khiavi a,*, Mahmoud Ameri b

- ^a Department of Civil Engineering, Zanjan University, Zanjan, Iran
- ^b Department of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

HIGHLIGHTS

- Dissipated energy remains almost constant in significant portion of loading cycles at low strain tests.
- The fatigue endurance limit value depends on the properties of hot mix asphalt mixture, test type and analysis method.
- There is a transition point in semi log strain- N_{150} curve when the curve is regressed using the power law relation.

ARTICLE INFO

Article history: Received 20 September 2013 Received in revised form 6 January 2014 Accepted 10 January 2014 Available online 3 February 2014

Keywords:
Asphalt
Fatigue
Endurance limit
Plateau value
Dissipated energy

ABSTRACT

The endurance limit is level of strain below which fatigue damage does not occur for any number of load repetitions. The evaluation and the determination of the fatigue endurance limit requires for testing at low strain levels. Various extrapolation methods were presented for the determination of fatigue lives at low strain levels. In this research study, the four point beam fatigue tests were conducted in accordance with AASHTO T321 using a semi sinusoidal loading at 10 Hz for 70, 150, 200, 250, 400, 700 and 1000 microstrain levels. The test data were investigated via the RDEC approach and PV–N $_{150}$ unique relationship to obtain the fatigue endurance limit. The results showed that there is a transition point in semi log strain–N $_{150}$ curve when the curve is regressed using the power law relation. The results also showed that the number of load cycles corresponding to transition strain (endurance limit) is different with load cycles corresponding to PV $_{L}$ (1.1E+7).

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, researchers have conducted various studies to validate and determine the fatigue endurance limit of hot mix asphalt. The studies showed that there is a tensile strain below which asphalt mixtures tend to have almost unlimited fatigue life [1]. The endurance limit is defined as the tensile strain below which no fracture or fatigue damage occurs [2].

For determination of endurance limit, fatigue tests must be conducted at low strain levels. Recent research studies showed that the fatigue tests consume much time at low strain so, generally, researchers have used a number of extrapolation techniques to predict the fatigue life. For low strain testing, extrapolation is necessary to predict N_{f50} (the number of load cycles corresponding to 50% of initial stiffness) because failure cannot be reached in an acceptable time frame [3].

In 2010, NCHRP 646 report presented the findings of research performed to investigate the existence and determination methods

of a fatigue endurance limit for hot mix asphalt (HMA) mixtures. In NCHRP 646 report, also, a number of extrapolation techniques were evaluated and finally, for fatigue life determination at low strain, several standard drafts presented including the standard practice for extrapolation long-life beam fatigue tests using the Ratio of Dissipated Energy Change (RDEC) approach [4]. This report shows that RDEC approach has potential to be used for fast determination of the fatigue life of asphalt mixtures [5]. Using the RDEC approach, the fatigue life of a low strain test can be predicted with shortened testing and still maintains sufficient accuracy [3].

RDEC is calculated with following equation [3]:

$$RDEC_a = \frac{(DE_a - DE_b)}{DE_a(b - a)} \tag{1}$$

where $RDEC_a$ = the average ratio of dissipated energy change at cycle a, comparing to cycle b; a, b = loading cycle a and b, respectively; DE_a , DE_b = dissipated energy at cycle a and b, respectively, which were calculated directly by fatigue testing program.

As shown in Fig. 1, when the RDEC is plotted versus number of load cycles (RDEC-LC curve), a curve is produced that decreases rapidly at the beginning application of load cycles, then reaches

^{*} Corresponding author. Tel.: +98 2188630258; fax: +98 2188630259. E-mail address: akhavandi@iust.ac.ir (A. Khavandi Khiavi).

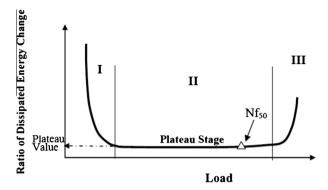


Fig. 1. Typical RDEC versus loading cycles plot and the indication of PV [3].

to an steady state and continues for a long number of load cycles (plateau stage) and increases rapidly at the end [6]. In the plateau stage (stage II), the RDEC value is almost constant, characterizing a period where there is a constant percentage of input energy being terned into damage. A plateau value, PV, is defined as the RDEC value corresponding to the 50% stiffness reduction load cycles (N_{150}) [7]. The PV provides a unique relationship with N_{150} for different mixture, loading modes and loading levels. PV- N_{150} relationship is presented in Eq. (2) [3,4]:

$$PV = 0.4428N_{f50}^{-1.1102} (2)$$

For fast determination of fatigue life, the RDEC–LC curve (log–log) of low strain testing for one mix and the unique PV– N_{f50} curve are plotted together. The RDEC–LC curve is extended until it crosses the unique PV– N_{f50} curve. The intersection point of these two curves produces: y = PV, $x = N_{f50}$ [8]. Fig. 2 shows the examples of this process [3].

According to all related conducted Researches, there is a unique energy level, PV_L, energy based fatigue endurance limit, which is the onset of the fundamental change in HMA fatigue behavior. If the energy level of a HMA mixture is below the PV_L, the mixture is expected to have extended long fatigue life. The conducted studies indicate that PV_L is around 6.74E–9, which corresponds to the breakpoint of the fatigue life at 1.10E+7, as shown in Fig. 2 [3,7].

In this research study, using the four point beam fatigue test, proposed standard practice for extrapolating long-life beam fatigue tests using RDEC were investigated. For each tested mixture, the

Table 1Aggregates properties.

Properties	ties Test method Result		
		Tabriz	Arak
Coarse aggregate			
Los angeles abrasion (%)	AASHTO-T96	20	21
Angularity (%)	ASTM-D5821	100	100
Elongation	BS-812	11	12
Flakiness	BS-812	22	23
Bulk specific gravity (gr/cm ³)	AASHTO-T85	2.654	2.656
Apparent specific gravity (gr/cm ³)	AASHTO-T85	2.709	2.713
Water absorption (%)	AASHTO-T85	1.1	0.8
Fine aggregate			
Plasticity index	AASHTO-T89,90	Non-plastic	Non-plastic
Sand equivalent	AASHTO-T81769	85	87
Bulk specific gravity (gr/cm ³)	AASHTO-T84	2.617	2.621
Apparent specific gravity (gr/cm ³)	AASHTO-T84	2.719	2.718
Water absorption (%)	AASHTO-T84	1.4	1.1
Filler			
Plasticity index	AASHTO-T89,90	Non-plastic	Non-plastic
Specific gravity (gr/cm ³)	AASHTO-T100	2.702	2.710
specific gravity (gr/ciii)		0_	_,,

Table 2 Aggregates gradations.

Sieve size (mm)	Type 1	Type 2	Type 3	
	Lab samples		Field samples	
	Percent passing (%)			
25	100	_	-	
19	95	100	100	
12.5	_	95	98	
9.525	63	_	_	
4.75	43	60	57	
2.375	31	43	45	
0.3	9	13	13	
0.075	4	7	6	

endurance limit values were determined based on analysis of strain- N_{f50} curves and a new proposed approach.

2. Background

The fatigue endurance limit concept was first proposed by Wöhler for metallic materials [5]. Barret et al. described the

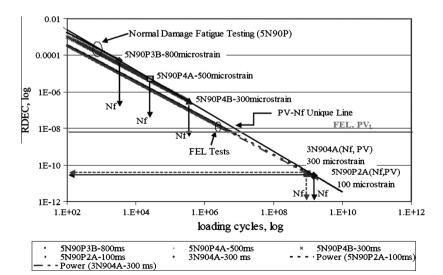


Fig. 2. Fatigue life prediction using RDEC approach and endurance limit PV_L [3,7].

Download English Version:

https://daneshyari.com/en/article/257812

Download Persian Version:

https://daneshyari.com/article/257812

Daneshyari.com