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a b s t r a c t

The carcinogenicity prediction has become a significant issue for the pharmaceutical industry. The
purpose of this investigation was to develop a novel prediction model of carcinogenicity of chemicals by
using a naïve Bayes classifier. The established model was validated by the internal 5-fold cross validation
and external test set. The naïve Bayes classifier gave an average overall prediction accuracy of 90 ± 0.8%
for the training set and 68 ± 1.9% for the external test set. Moreover, five simple molecular descriptors
(e.g., AlogP, Molecular weight (MW), No. of H donors, Apol and Wiener) considered as important for the
carcinogenicity of chemicals were identified, and some substructures related to the carcinogenicity were
achieved. Thus, we hope the established naïve Bayes prediction model could be applied to filter early-
stage molecules for this potential carcinogenicity adverse effect; and the identified five simple molec-
ular descriptors and substructures of carcinogens would give a better understanding of the carcinoge-
nicity of chemicals, and further provide guidance for medicinal chemists in the design of new candidate
drugs and lead optimization, ultimately reducing the attrition rate in later stages of drug development.

© 2016 Published by Elsevier Ltd.

1. Introduction

Toxicity of drugs, as a significant issue for the pharmaceutical
industry, most frequently lead to increased attrition and cost, late-
stage failures and even market withdrawals (Lasser et al., 2002;
Paul et al., 2010; Segall and Barber, 2014). In order to reduce
attrition of drug candidates as a result of adverse drug reactions
(ADRs), extensive studies, including chemical structure, genetic,
biological systems and clinical perspectives, have been applied in
the drug discovery process (Kennedy, 1997). Carcinogenicity is
among the toxicological endpoints that pose the highest public
concern (Fjodorova et al., 2010a). Any substance that damages the
genome or disrupts the cellular metabolic processes might induce
tumors, increase tumor incidence, or short the time to tumor
occurrence, called carcinogen (Fjodorova et al., 2010a, 2010b).
Presently, various factors, such as lifestyle, diet, smoking, pollution,

indoor andworkplace exposure, are found to have the potential risk
of cancer causation, and exposure to chemicals is an essential
carcinogen (Belpomme et al., 2007; Benigni and Bossa, 2011;
Marone et al., 2014). In order to reduce the risk of chemical in-
duction of carcinogenicity in drug development, different strate-
gies, ranging from biochemical investigations, to the use of assay
systems, to in silico methodologies, have been extensively imple-
mented throughout the pharmaceutical industry (Marone et al.,
2014). However, owing to the experimental approaches for the
carcinogenicity testing of chemicals is very expensive, time
consuming, and even unethical, the in silico methodologies for
predicting the carcinogenicity of chemicals has become a research
focus in recent years.

Computational techniques for the prediction of toxicity is a
rapidly growing field, and the major driving force for which is the
implementation of the European Union REACH (Registration,
Evaluation and Authorization of Chemicals) legislation (Lagunin
et al., 2009) and ICH (International Conference on Harmoniza-
tion) guideline (Jena et al., 2005a,b). These regulations explicitly
encourage the use and development of alternative methods, such
as quantitative structure-activity relationships (QSARs), for in vivo

* Corresponding author. College of Life Science, Northwest Normal University,
Lanzhou, Gansu, 730070, PR China.

E-mail address: zhanghui123gansu@163.com (H. Zhang).

Contents lists available at ScienceDirect

Food and Chemical Toxicology

journal homepage: www.elsevier .com/locate/ foodchemtox

http://dx.doi.org/10.1016/j.fct.2016.09.005
0278-6915/© 2016 Published by Elsevier Ltd.

Food and Chemical Toxicology 97 (2016) 141e149

mailto:zhanghui123gansu@163.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fct.2016.09.005&domain=pdf
www.sciencedirect.com/science/journal/02786915
www.elsevier.com/locate/foodchemtox
http://dx.doi.org/10.1016/j.fct.2016.09.005
http://dx.doi.org/10.1016/j.fct.2016.09.005
http://dx.doi.org/10.1016/j.fct.2016.09.005


toxicological assessment (FDA, 2015; REACH, 2011). For example,
The ICH M7 guidance (FDA, 2015) suggests the computational
toxicology assessment should be performed using two comple-
mentary QSAR methodologies: “expert rule-based” and “statisti-
cally-based”, and points out the QSAR models utilizing these
prediction methodologies should adhere to the general validation
principles set forth by the Organization for Economic Cooperation
and Development (OECD, 2007). Presently, many computational
prediction approaches for the carcinogenicity of chemicals have
been reported (Benigni and Zito, 2003; Contrera et al., 2003, 2007;
Fjodorova et al., 2010a; Helguera et al., 2005; Hulzebos et al., 2005;
Kar and Roy, 2011; Klopman et al., 2004; Lagunin et al., 2005;
Matthews and Contrera, 1998; Singh et al., 2013; Tan et al., 2009;
Valerio et al., 2007; Woo and Lai, 2005; Zhu et al., 2008; Zhong
et al., 2013). Among these prediction approaches, the QSARs
methods have been broadly applied in prediction of carcinogenicity
of chemicals. The QSARs attempt to find relationships between the
chemical structure (structural and physicochemical features) with
an endpoint (e.g., toxic effect) using a statistically derived mathe-
matical equations (Dearden, 2016; Roy et al., 2015). For example,
Fjodorova et al. (2010a) performed a classification model of
chemicals of carcinogenic potency based on 27 two-dimensional
MDL descriptors and propagation artificial neural network (CP
ANN) technique, which gave an accuracy of 92% for the training set
and 68% for the test set. Zhong et al. (2013) constructed support
vector machine (SVM) model with using 24 molecular descriptors,
and the prediction model gave over 80% for the test set. Singh et al.
(2013) extracted 834 structurally diverse chemicals of rat data to
construct probabilistic neural network (PNN) prediction model
using five descriptors, and gave classification accuracy of 92.09% in
complete rat data. Although these machine learning methods could
give satisfactory accuracies in the forecast of carcinogenicity, the
end-points of previous studies were considered as receptorial or in
general fine-tuned process. Moreover, we found a large number of
molecular descriptors were used in previous researches, whichmay
limit the ability to interpret the mechanisms of carcinogenicity. In
this research, the naïve Bayes classifier was considered to assess the
carcinogenicity of chemical compounds. The naïve Bayes classifi-
cation model employs the versatile machine learning algorithms
based on the Bayes' theorem with the conditional independence
assumptions (Box and Tiao, 2011; Berger, 2013), in which each
variable can be independently estimated as a one dimensional
variable. Because of the conditional independence assumption is
rarely true in real-world applications, the naïve Bayes classifier
often performs surprisingly well.

The objective of this study is to build a novel predictionmodel to
discriminate chemicals as carcinogens and non-carcinogens with
using naïve Bayes method, and identify some important molecular
descriptors and substructures of carcinogenic compounds. The
established prediction models will be validated by the internal 5-
fold cross validation and external test set. We hope the estab-
lished naïve Bayes prediction model of the carcinogenicity of
chemicals could be applied to filter early-stage molecules for this
potential carcinogenicity adverse effect. Furthermore, the identi-
fied simple molecular descriptors and substructures of carcinogens
would give a better understanding of the carcinogenicity of
chemicals, and provide guidance for medicinal chemists in the
design of new candidate drugs and lead optimization, ultimately
reducing the attrition rate in later stages of drug development.

2. Materials and methods

2.1. Dataset

Presently, animal experiments are the major source of

information on chemical carcinogens, and several on-line database
of rodent carcinogenicity are available, such as the Carcinogenic
Potency Database (CPDB) (http://potency.berkeley.edu/cpdb.html),
the US National Toxicology Program (NTP) database (http://ntp-
apps.niehs.nih.gov/ntp_tox/index.cfm), Istituto Superiore di San-
ita, Chemical Carcinogens: “Structures and Experimental Data”
(ISSCAN) (http://www.epa.gov/ncct/dsstox/sdf_isscan_external.
html), and Pesticides Action Network (PAN) database (http://
www.pesticideinfo.org). Among these databases, the Carcinogenic
Potency Database (CPDB), containing a large diversity of chemical
structures (1547 substances), is considered as a single standardized
resource of information on many chronic long term bioassays
(Singh et al., 2013). The rat driven data of carcinogenicity is
considered more suitable for human carcinogenicity prediction
than those of other rodents (Huff et al., 1991; Huff, 1999; Fung et al.,
1995). Thus, in this study, we only considered the rat data of car-
cinogenicity that extracted from the Carcinogenic Potency Database
(CPDB). After deletion of some inorganic compounds and complex
compounds, 1042 compounds of rat carcinogenicity, including 506
carcinogens (positives) and 536 non-carcinogens (negatives), were
remained. These selected compounds were then randomly sepa-
rated into five equal-sized subsets. Of the five subsets, four subsets
were used as training set (834 compounds, 80% of the data), and the
remaining one subset was employed for the test set (208 com-
pounds, 20% of the data) (Table 1). This process was repeated five
times in such a way that each subset was used exactly once as the
external test set. Finally, five datasets (Dataset 1e5) were obtained.

2.2. Molecular descriptors

All the molecular descriptors were calculated by Discovery
Studio 3.1 software (http://accelrys.com/products/discovery-
studio/). In this investigation, seventeen descriptors that widely
used in the ADME/T prediction were selected (Wang et al., 2012;
Hou and Wang, 2008; Zhang et al., 2015, 2016). The descriptors
include the number of N atom, the number of O atom, ALogP, Apol,
logD, molecular solubility, molecular weight, the number of aro-
matic rings, the number of H acceptors, the number of H donors, the
number of rings, the number of rotatable bonds, molecular frac-
tional polar surface area, molecular polar surface area, molecular
surface area, Wiener and Zagreb.

2.3. ECFP_14 fingerprints

The extended-connectivity fingerprints (ECFPs), a class of to-
pological fingerprints for molecular characterization, are derived
using a variant of the Morgan algorithm (Morgan, 1965). The ECFPs
are designed to capture molecular features relevant to molecular
activity, and recently applied in substructure searching, drug ac-
tivity predicting, similarity searching, clustering, and virtual
screening (Rogers and Hahn, 2010). In this study, the ECFP_14 fin-
gerprints were used to analyze the structure features of
carcinogenic/non-carcinogenic compounds.

Table 1
The number of compounds used in each of the training set and test set.

Training set Test set Total

Carcinogenic agents 405 101 506
Non-carcinogenic agents 429 107 536
Total 834 208 1042
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