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a b s t r a c t

Mould growth and mycotoxin production are related to plant stress caused by environmental factors
such as: extreme weather; insect damage; inadequate storage conditions and incorrect fertilization;
these predispose plants to mycotoxin contamination in the field. Fusarium species infect wheat during
the flowering period. In addition to losses of yield, these fungi can also synthesize toxic components
(mycotoxins) in suitable environmental conditions, thus threatening animal and human health. Given
the severe consequences and the fact that mycotoxins affect production throughout the world, the ability
to predict Fusarium head blight (FHB) and deoxynivalenol (DON) and other mycotoxin contamination is
important to reduce the year-to-year risk for producers. Owing to these dangerous consequences in
Argentina, Belgium, Canada, Italy, the United States and in Europe, computer models, based on weather
variables (temperature, rainfall and moisture level), have been developed to predict the occurrence of
FHB and DON contamination in wheat.

� 2008 Elsevier Ltd. All rights reserved.

1. Mycotoxins and predictive models

Mycotoxins are toxic secondary metabolites produced by fungi
(commonly called moulds) that colonize crops in field or post-har-
vest and thus pose a potential threat to human and animal health.
Only some moulds produce mycotoxins and they are referred to as
toxigenic. The major mycotoxin-producing fungal genera are
Aspergillus, Fusarium and Penicillium. Many species of these fungi
produce mycotoxins; moulds can grow and mycotoxins can be pro-
duced pre-harvest, during transport, processing or storage (Santin,
2005). The primary classes of mycotoxins are aflatoxins, zearale-
nones, trichothecenes, fumonisins, ochratoxins and ergot alkaloids.
A practical definition of a mycotoxin is a secondary fungal metab-
olite that causes an undesirable effect when animals or humans are
exposed to it. Usually, exposure is through consumption of con-
taminated food, which causes diseases known as mycotoxicosis.
Mycotoxins exhibit a variety of biological effects in animals such
as liver and kidney toxicity, effects on the central nervous system,
estrogenic effects (Whitlow and Hagler, 2005) and reduction of
immunological defences, to name a few. It is important, both for
consumers’ health and the economic point of view, to prevent

mould growth and subsequent mycotoxin production in food prod-
ucts (Pardo et al., 2006).

Mould growth and mycotoxin production are related to: the
presence of fungal inoculum on susceptible crops; plant stress
caused by extreme weather, faulty water and fertilization balance;
insect damage; and inadequate storage conditions. In general, bio-
tic and abiotic stresses (heat, water and insect damage) cause plant
stress and predispose plants in the field to mycotoxin contamina-
tion (Whitlow and Hagler, 2005), and there is an urgent need to
know the level of contamination in real time or in advance. This as-
pect stimulated efforts to develop models (Dantigny et al., 2005). A
disease forecasting system is principally based on the combined ef-
fects of host susceptibility, inoculum strength and meteorological
conditions on disease development (Xu, 2003).

A model is a simplified representation of a system, which is a
limited part of reality and contains interrelated elements, and at-
tempts to summarise the main processes, to put forward hypothe-
ses and to verify their coherence and consequences (Rabbinge and
De Wit, 1989; van Maanen and Xu, 2003). The level of complexity
needed for a specific model depends on the objectives and ques-
tions being asked of the model (Boote et al., 1996). Static and dy-
namic models can be developed, dependent if time is considered
in the model. Among dynamic models; those defined as ‘descrip-
tive’ simply trace the outlines of a system, and only show the exis-
tence of relations between elements, but do not explain these
relations. A more complicated approach is taken when the aim is
to describe a more comprehensive system with its relations therein
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and ‘explanatory’ models are developed in this case. During World
War II a rational approach was developed in order to study a sys-
tem in detail: systems analysis. Systems analysis was developed
basically as a tool to consider military options but it was demon-
strated to be useful in different disciplines, where a system is stud-
ied by distinguishing its major components, characterising their
changes, and the interconnecting elements (Leffelaar, 1993). The
system structure in plant pathology includes pathogen, host, envi-
ronment, human actions and their relationships (De Wit, 1993).
Modelling can be split into three steps: model development, model
analysis and hypothesis testing (van Maanen and Xu, 2003). A sim-
ple way to represent a complicated system, like a pathosystem, is a
relational diagram as a first step in model development (Leffelaar,
1993).

Collection of information from different sources (step 1) is the
basis of ‘‘system analysis” that starts with drawing a relational dia-
gram translated into quantitative relationships that allow the quan-
tification of states. Putting together all mathematical functions
(step 2), a simulation model able to predict fungal development is
finally obtained. Model validation and evaluation (step 3) is then
necessary before building up a final model used on a large scale.

Explanatory models are significantly more complicated than
descriptive. Due to the consideration of so many elements, as sug-
gested by De Wit, the explanatory models are too complicated to
be suitable for prediction in very different conditions.

The goal of this paper is to illustrate models developed for FHB
and related mycotoxin contamination in wheat, the most studied
disease related to mycotoxins because of the world wide distribu-
tion of wheat and Fusarium. Almost all models were developed as a
descriptive model, and similar approaches have been followed in
several countries, while an explanatory model, based on the sys-
tem analysis, was developed in Italy.

2. Fusarium head blight (FHB) in wheat

Fusarium head blight, which is caused by several fungal species
with Fusarium or Fusarium-like anamorphs, is a serious disease of
wheat in many parts of the world (Rossi et al., 2003b). Though
FHB can be destructive, its severity varies greatly between years
and locations, as this disease is heavily dependent on favourable
epidemiological conditions (Rossi et al., 2004).

Infection by Fusarium spp. on wheat occurs during the flowering
period. In addition to yield losses, these fungi can also synthesize
toxic compounds (mycotoxins) in favourable environmental condi-
tions, thus representing an important threat for animal and human
health. (Detrixhe et al., 2003). Preventive actions are possible so as
control strategies; accurate predictions of DON in mature grain at
wheat heading are needed to make decisions on whether a control
strategy is needed. If weather variables can be quantified into
DON-response relationship, a model could be developed to predict
the concentration of DON using both forecasted and actual weather
data for specific fields (Hooker et al., 2002). On the basis of the
known relationship between fungal biomass and DON, more heav-
ily colonized plant tissue is likely to have a greater fungal biomass,
and consequently, higher DON content than less colonized tissue.
For this reason, visual estimates of disease could also serve as indi-
rect measures of DON to screen for genotypes with low DON accu-
mulation (Paul et al., 2005).

Attempts to predict head blight have emphasised the impor-
tance of both inoculum and the environment for disease epidemics
(Parry et al., 1995). In order to predict disease incidence and to in-
crease the ability of wheat producers to achieve good disease man-
agement, several FHB infection or mycotoxin risk assessment
models have been developed (De Wolf et al., 2003, 2004; Detrixhe
et al., 2003; Madden et al., 2004; Schaafsma and Hooker, 2006).

Fusarium head blight (FHB) is well-suited for risk assessment
modelling because of the severity of epidemics, compounded
losses resulting from mycotoxin contamination, and related nar-
row time periods of pathogen sporulation, inoculum dispersal,
and host infection (De Wolf et al., 2003).

Computer models to predict the occurrence of FHB and deoxy-
nivalenol (DON) contamination in wheat at harvest have been
based on weather variables (temperature, rainfall and moisture)
(Moschini et al., 2001; Hooker et al., 2002; De Wolf et al., 2004;
Madden et al., 2004). In general, studies from outside the US in
spring and winter wheat regions (Europe, Canada, and Africa) indi-
cated interactions between disease intensity and occurrence of
DON comparable with or stronger than that found from US winter
wheat areas, and weaker than those found in studies of US spring
wheat areas (Paul et al., 2005).

2.1. Argentina

In Argentina, Moschini and Fortugno (1996) developed empiri-
cal equations to predict FHB incidence (Predictive Index: PI%) asso-
ciating mean head blight incidence of many wheat cultivars with
temperature and moisture variables. Two of these equations were
validated subsequently by Moschini et al. (2001):

PI% ¼ 20:37þ 8:63 �NP2 � 0:49 � DD926 ð1Þ

PI% ¼ 18:34þ 4:12 � NP12 � 0:45 � DD1026 ð2Þ

where NP2 is the number of 2 day periods with precipitation
(P0.2 mm) and relative humidity >81% on the first day and relative
humidity P78% on the second day; NP12 is the total number of NP2

periods plus the total number of days with both precipitation
P0.2 mm and average relative humidity >83%. DD926 and DD1026

represent 926 or 1026 degree days accumulated and are calculated
as:

DD926 ¼ r½ðMaxTÞ � 26Þ þ ð9�MinTÞ� ð3Þ

DD1026 ¼ r½ðMaxT� 26Þ þ ð10�MinTÞ� ð4Þ

where MaxT is the maximum daily temperature >26 �C, MinT is the
minimum daily temperature <9 �C or <10 �C, and summation occurs
over the days of the critical period length (CPL). CPL is the time per-
iod beginning 8 days before the heading date and ending when 530
degree days were accumulated (base temperature: 0 �C).

This study showed that meteorological based empirical equa-
tions developed for Pergamino can be useful for predicting disease
intensity at many northern locations in the Pampas region, making
only a few changes in temperature thresholds. Fernandes et al.
(2004) used a linked process-based model to assess the risk of
FHB at three sites in South America, and stated that the highest risk
index of FHB was probably due to the presence of more rainy days
during the autumn in a specific climate scenario (Fernandes et al.,
2004).

2.2. Belgium

In Belgium, in order to assess the risk of head blight infection in
winter wheat, an agro-meteorological model has been developed
on the basis of an interpolation of weather radar data (above all
rainfall events) to simulate the leaf wetness duration on a grid size
of 1 � 1 km (Detrixhe et al., 2003). Leaf wetness duration has a
strong relationship with the development and outbreak of plant
diseases because many important pathogens require a layer of free
water to move on the surface of plant organs and start their infec-
tive processes (Dalla Marta et al., 2005). This model is interesting
for two reasons: the first is the interpolation of meteorological data
on an area of interest and particularly the use of weather radar
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