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Abstract

Probabilistic risk assessment is gaining acceptance as the most appropriate way to characterize and communicate uncertainties in esti-
mates of human health risk and/or reference levels of exposure such as benchmark doses. Although probabilistic techniques are well
established in the exposure-assessment component of the National Research Council’s risk-assessment paradigm, they are less well devel-
oped in the dose-response-assessment component. This paper proposes the use of hierarchical statistical models as tools for implement-
ing probabilistic dose—response assessments, in that such models provide a natural connection between the pharmacokinetic (PK) and
pharmacodynamic (PD) components of dose-response models. The results show that incorporating internal dose information into dose—
response assessments via the coupling of PK and PD models in a hierarchical structure can reduce the uncertainty in the dose-response
assessment of risk. However, information on the mean of the internal dose distribution is sufficient; having information on the variance
of internal dose does not affect the uncertainty in the resulting estimates of excess risks or benchmark doses. In addition, the complexity

of a PK model of internal dose does not affect how the variability in risk is measured via the ultimate endpoint.
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1. Introduction

Hierarchical statistical models can provide useful for-
mulations for facilitating probabilistic risk assessments
for adverse human health effects. Bayesian hierarchical
models (Carlin and Louis, 1996), in particular, have
become increasingly popular for fitting complex physiolog-
ically based pharmacokinetic (PBPK) models to produce
probabilistic representations of internal dose (Gelman
et al., 1996). These complex PBPK models, which practitio-
ners are utilizing more commonly in human health risk
assessment (Young et al., 2001; Lipscomb et al., 2003; Cle-
well and Andersen, 2004), present special challenges for
evaluation of model adequacy (Clark et al., 2004; Clewell
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et al., 2005). It has been suggested that the Bayesian hier-
archical framework presents a firm statistical foundation
for model calibration to facilitate appropriate characteriza-
tion of the uncertainty in model outputs (Zeise et al., 2002).

This paper proposes that a hierarchical statistical model
is also the most natural and correct way to link the phar-
macokinetic (PK) and pharmacodynamic (PD) compo-
nents of PK/PD dose-response models for probabilistic
dose-response assessment, whether or not these compo-
nents are physiologically based (Andersen, 1995; Schlosser
et al., 2003). The extent to which such hierarchical formu-
lations may help to account for uncertainty in the dose—
response component of the risk assessment process is
explored. Unlike the typical Bayesian hierarchical model
used in PBPK analysis, in which the hierarchy arises from
the assumption of a prior distribution on the model’s
parameters, the PK/PD model’s hierarchy arises from the
fact that the PD model is conditionally dependent on the
distribution of the internal dose represented by the PK
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model. To facilitate the exposition, the context will be can-
cer risk assessment; however, the conclusions apply gener-
ally to adverse endpoints in human health risk assessment.

2. Methods
2.1. Hierarchical models

In the general health risk assessment paradigm (NRC, 1983), once a
hazard assessment has been conducted and a (potential) carcinogen has
been identified, the risk assessment proceeds to an exposure assessment
and a dose-response assessment, which are often conducted separately
and then linked to produce a risk characterization. The focus of this paper
is the dose-response component of the process.

The dose-response assessment often involves fitting a mathematical
model in dose (usually, administered dose) to tumorigenicity data from
a two-year rodent bioassay. The probability of a tumor at administered
dose D is expressed as

Pr(tumor|D) = F(D), 1

where F(D) may be the multistage model, probit model, or some other
dose-response function. With a model such as this, no attempt is made
to separate the hidden PK and PD components that might explain the
transformation of an external exposure into the development of a tumor.

For some time it has been recognized that PK information on internal
dose ought to be incorporated into dose-response models whenever possi-
ble (Andersen et al., 1987). One way to do this is to conduct a PK analysis
in the rodent species/strain tested in the cancer bioassay to estimate the
average internal dose p(d|D) at each administered dose D (e.g., the aver-
age AUC (area under the blood concentration—time curve) and/or Cpay
(maximum blood concentration) of parent chemical or metabolite). The
estimate, dp, is then simply substituted for D in (1) (Gehring et al.,
1978; Starr, 1990). Hence, (1) becomes the PD model, F(d)). If this aver-
age internal dose can be formulated mathematically as a function of D, say
w(d|D) = H(D), then H(D) can be substituted functionally for D in the
dose-response model in (1) (e.g., Van Ryzin and Rai, 1987).

It is suggested here that the most natural and correct way to link the
PK and PD components directly in the dose-response assessment is via
a hierarchical model. Let f(d|D) be the rodent probability density function
of internal dose, d, for administered dose, D, where f is obtained by PK
analysis. Let g(tumor|d) be a dose-response model representing the PD
model for development of a tumor from exposure to internal dose, d.
The hierarchical formulation is

Pr(tumor|D) = Py + (1 — Py) / g(tumorlx)f(x|D) dx, )

where Py is the background tumor risk and x is simply a variable of inte-
gration. The expected value (mean) of f(d|D) is u(d|D)= H(D) defined
above. To determine f(d|D) from a PK experiment with rats, for example,
an internal dose (e.g., AUC) can be determined for each of several animals
all having the same administered dose, D, and the sample mean and stan-
dard deviation can be used to formulate f(d|D). It is customary to assume
a normal distribution for f(d|D) based on the similarity of the shapes of
the blood concentration-time curves of individual animals. The PK anal-
ysis might be somewhat simple, reflecting variation only in physiological
parameters that control uptake, distribution, etc.; however, it could in-
volve fitting a complex, PBPK model, perhaps a model that itself has a
(Bayesian) hierarchical structure (e.g., Hack, 2006), to account for prior
information on parameter values. If there is sufficient information on
mechanism of action, then the PD model g(tumor|d) would reflect that
mechanism (e.g., Kodell et al., 2001). Most often, however, g is likely to
be a common dose-response model like the multistage, probit or Weibull.
Nonetheless, the integral expression (2) with the hierarchical formulation
provides a direct linkage of PK and PD components, such that the prob-
ability of developing a tumor is the expected value of the PD model over
the PK-derived internal-dose distribution. That is, the hierarchical model
represents E¢[g(tumorl|d)|D]. Simply substituting the mean internal dose,

as described above (Van Ryzin and Rai, 1987), represents g[tu-
mor|E¢(d|D)]. (In many contexts, using the simpler g[E¢(x)] in place of
the more complex E¢[g(x)]is often motivated by a first-order Taylor series
approximation.)

If informative data on mechanism of action are available, then the
expression for the probability of a tumor at dose D might look like

Pr(tumor|D) = Py + (1 — Py) / g(tumorly) / Wol)f (D) dedy,  (3)

where /1(y|x) represents a function that relates internal dose x to a tissue
response y, that is a precursor to the formation of a tumor. For example,
x might be the level of a key metabolite in a target tissue determined by
PBPK analysis and y might be the proliferation rate of preneoplastic cells
in the target tissue determined by PCNA analysis. The function, g, could
be a two-stage, clonal-growth model that links the growth of preneoplastic
cells to the development of the ultimate tumor. Changing the order of inte-
gration, expression (3) can be rewritten as

Pr(tumor|D) = Po + (1 — Py) / [ / g(tumor))h(yl)dy| f(ID) dv.  (4)

Hence, the PD model of expression (2), g(tumor]|x), has been expanded to
Jg(tumor|y)h(y|x)dy in the brackets in expression (4). Note that the func-
tions f, g, and 1 may themselves have arisen from hierarchical models. For
example, f(x|D) might be the Bayesian posterior distribution of internal
dose, if prior information on internal dose is available to utilize a Bayesian
hierarchical structure in the PK analysis.

2.2. Fitting models to data

It is helpful to use specific examples to convey ideas. Table 1 gives
hypothetical tumor dose-response data from a typical 2-year rodent bio-
assay with four administered doses and 50 animals per group. Two distinct
PK/PD scenarios are illustrated initially, with variations on these dis-
cussed subsequently. First, assume that a PK analysis in rodents has indi-
cated that, for any administered dose D, the internal dose distribution is
approximately normal with mean, p=0.1 D, and standard deviation,
¢ =0.2 u. Thus,

f(d|D) = (1/(0.02DV2m)) exp(—(1/2)((d — 0.1D)/(0.02D))?). (5)
Suppose further that a simple 2-stage PD model links the internal dose to
the tumor response, i.e.,

g(tumorld) = 1 — exp(—(f1d + fod”)). (6)

The probability of a tumor is given by expression (2) with fand g given by
(5) and (6), respectively.

Alternatively, assume that PK analysis has indicated that, for any
administered dose D, the internal dose distribution is approximately nor-
mal with a Michaelis-Menten type mean, 4 =2 D/(10 + D), and standard
deviation, ¢ = 0.2u. Thus,

f(d|D) = (1/((0.4 D/(10 + D))V2m))
x exp(—(1/2)((d —2D/(10+ D))/(0.4D/(10 + D)))Z) (7)

Suppose further that in this case a simple Weibull PD model links the
internal dose to the tumor response, i.e.,

g(tumor|d) = 1 — exp(—pd"). (8)

Table 1
Hypothetical tumor dose-response data from a 2-year rodent bioassay

Dose  Group size ~ Number with tumors  Proportion with tumors
0 50 5 0.10

10 50 7 0.14

20 50 13 0.26

40 50 20 0.40
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