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a b s t r a c t

In this study, an artificial neural networks study was carried out to predict the core compressive strength
of self-compacting concrete (SCC) mixtures with mineral additives. This study is based on the determi-
nation of the variation of core compressive strength, water absorption and unit weight in curtain wall
elements. One conventional concrete (vibrated concrete) and six different self-compacting concrete
(SCC) mixtures with mineral additives were prepared. SCC mixtures were produced as control concrete
(without mineral additives), moreover fly ash and limestone powder were used with two different
replacement ratios (15% and 30%) of cement and marble powder was used with 15% replacement ratio
of cement. SCC mixtures were compared to conventional concrete according to the variation of compres-
sive strength, water absorption and unit weight. It can be seen from this study, self-compacting concretes
consolidated by its own weight homogeneously in the narrow reinforcement construction elements.
Experimental results were also obtained by building models according to artificial neural network
(ANN) to predict the core compressive strength. ANN model is constructed, trained and tested using these
data. The results showed that ANN can be an alternative approach for the predicting the core compressive
strength of self-compacting concrete (SCC) mixtures with mineral additives.

Crown Copyright � 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Self-compacting concrete (SCC) has emerged in Japan in the late
1980s as a material that can flow under its own weight, so that it
can be easily placed, without need for additional mechanical com-
paction, in complicated formwork, congested reinforced structural
elements and hard to reach areas [1–3]. This concrete has gained
wide use in many countries for different applications and struc-
tural configurations [4–8]. The key performance criterion of this
technology is attaining a highly fluid behavior while preventing
bleeding and segregation of the mixture components [9].

Self-compacting concrete (SCC) removes the need for compac-
tion when placing fresh concrete. This saves time, reduces overall
cost, improves working environment and opens the way for the
automation of the concrete construction. Because of these signifi-
cant benefits, SCC is expected to gradually replace most of the or-
dinary concrete currently produced [10,11]. Especially the
developments in the superplasticizer technology have contributed
considerably to formation and progression of the self-compacting
concrete [12,13]. Different from the classical concrete design, the
self-compacting concrete needs the superplasticizers, viscosity

increasing addition and inert or pozzolanic mineral additions in
big quantity all together or partly.

The artificial neural networks solve very complex problems with
the help of interconnected computing elements. Basically, the pro-
cessing elements of a neural network are similar to the neurons in
the brain, which consist of many simple computational elements ar-
ranged in layers [14]. In recent years, the ANNs have been extended
extensively and applied to many civil engineering applications [15]
such as concrete durability [16], drying shrinkage [17], ready mixed
concrete delivery [18], slump model [19], workability of concrete
with metakaolin and fly ash [20,21], concrete structures [22–25],
mechanical behavior of concrete at high temperatures [26], con-
struction smoothness specification pay factor limits [27], cost anal-
ysis of HPC in tall building construction [28], asphalt concrete
permeability [29] and long term effect of fly ash and silica fume on
compressive strength [30]. The concrete mix proportion thus ob-
tained is expected to result with the lesser number of trials, cost
and time. Further the concrete designed by ANN is expected to have
optimum cement and water contents, thus leading to higher dura-
bility and relatively better economical and ecological effects [31].

In this study large-sized (300 � 150 � 20 cm), L-shaped and dou-
ble-sided reinforcement mesh equipment which was designed often
combined with a special pre-screen in the form of equipment and
placed in molds and curtain wall specimens were produced. The
aim of this paper is to construct an ANN model to predict the com-
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pressive strength. For this purpose, a computer program was devel-
oped in MATLAB. Furthermore, the results obtained from the ANN
model were compared with the average results of the experiments.

2. Experimental procedure

2.1. Materials

The Portland cement used in this study was produced according to the European
Standards EN-197/1 and labeled as CEM I/42.5 R. The physical and chemical proper-
ties of the Portland cement is listed in Table 1. The maximum size of coarse aggre-
gate was selected as 16 mm in order to avoid the blocking effect of SCC. Besides,

fly ash, marble powder and limestone powder were used as mineral and filler addi-
tives in SCC to utilize it. Specific surface area by Blaine and 28th day compressive
strength of cement were 399.6 m2/kg, and 48.3 MPa, respectively.

Marble powder (MP) was provided from a marble managing plant in Bilecik di-
rectly used in SCC without any processes. The specific surface area by Blaine of MP
is 889 m2/kg. Limestone powder was a by-product of quarry crushers and collected
from the filtration system of a quarry crushers. The characteristic properties, min-
eralogical composition and particle size distribution of filler materials are given
Table 1.

Polycarboxylate based and high range water reducing superplasticizer was also
used in the mixtures at the ratio of 1.6% of binder materials by weight for reducing
the water/binder ratio of SCC. The solid content and pH of superplasticizer were 21%
and 8%, respectively. Tap water used was obtained from the city waterworks of Sak-
arya for the production of concrete mixtures during the experimental procedure.

Table 1
Properties of portland cement and mineral additives.

Cement Fly ash Limestone powder Marble powder

Chemical composition (%)
SiO2 19.10 47.09 4.93 0.70
AI2O3 4.85 17.41 0.82 0.29
Fe2O3 3.24 8.34 0.58 0.12
CaO 61.86 13.98 51.97 55.49
MgO 2.02 1.85 0.58 0.23
SO3 2.63 4.65 – –
Loss ignition 2.90 1.79 40.40 42.83
CI� 0.00 – – –
Na2O – 2.44 – 2.44
K2O – 1.80 – 1.80

Physical properties
Specific gravity 3.08 2.17 2,79 2,71
Blaine (cm2/g) 3996 2469 2500 8889

Table 2
Mix proportions of SCC and vibrated concrete for 1 m3.

Materials (kg/m3) Vibrated concrete Control FA15 SCC FA30 SCC LP15 SCC LP30 SCC MP15 SCC

Cement 550 550 467 385 467 385 467
Limestone powder – – – – 83 165 –
Marble powder – – – – – – 83
Fly ash – – 83 165 – – –
Water 182 182 182 182 182 182 182
w/c ratio 0.33 0.33 0.39 0.51 0.37 0.47 0.39
w/p ratio 0.33 0.33 0.33 0.33 0.33 0.33 0.33
Sand 865 869 865 878 866 860 863
CSI 466 467 457 445 464 461 463
CSII 320 311 305 297 311 307 312
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Fig. 1. Core points on curtain wall.
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