

Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A: Chemistry

journal homepage: www.elsevier.com/locate/jphotochem

Enhancement of photocatalytic activity of CaTiO₃ through HNO₃ acidification

Chong Han*, Jingjing Liu, Wangjin Yang, Qianqian Wu, He Yang, Xiangxin Xue

School of Metallurgy, Northeastern University, Shenyang 110819, China

ARTICLE INFO

Article history:
Received 2 December 2015
Received in revised form 11 February 2016
Accepted 15 February 2016
Available online 18 February 2016

Keywords: CaTiO₃ HNO₃ Substitutional N Interstitial N

ABSTRACT

CaTiO $_3$ synthesized by the hydrothermal method was treated to improve its photocatalytic activity using the HNO $_3$ acidification. Changes of morphology, structure, and composition of the acidified CaTiO $_3$ were investigated through various means such as XRD, SEM, BET, FTIR, Raman spectra, XPS, and UV-vis DRS. The results show that the enhancement of HNO $_3$ acidification led to the increase of substitutional N (O-Ti-N) compared to interstitial N (Ti-O-N and Ti-N-O) in the CaTiO $_3$ lattice. The apparent first-order reaction constant ($k_{\rm obs}$) of methylene blue over the acidified CaTiO $_3$ at pH 2 was the largest and increased by 1.0 times than that over the not-acidified CaTiO $_3$, indicating that the acidified CaTiO $_3$ at pH 2 has the best photocatalytic performance among as-prepared samples. A negatively linear relationship between $k_{\rm obs}$ and $|1-N_{\rm O-Ti-N}/N_{\rm Ti-O-N+Ti-N-O}|$ suggests that the improvement of photocatalytic activity of CaTiO $_3$ by HNO $_3$ acidification depends on synergistic effects of substitutional and interstitial N in CaTiO $_3$ lattice.

1. Introduction

The perovskite-type oxides with a structural formula of ABO₃ (A is a rare or alkaline earth metal and B is a first row transition metal) have excellent properties with wide applications in electronics. ceramics, superconductor, nonlinear optics, and catalysis [1–4]. CaTiO₃ is well known as one of the most important perovskites and has attracted more and more focus in the last decade. It can be prepared by many methods such as solid state [5-7], coprecipitation [8], mechanochemical [9], sol-gel [10-12], hydrothermal [13–16], and solvothermal methods [17,18]. Among these methods, hydrothermal or solvothermal routes for CaTiO₃ have become the popular methods because they can exactly control crystal growth, achieve novel crystal morphologies, and optimize physicochemical properties [14]. Hydrothermal or solvothermal methods generally involved the facile reactions of titanium alkoxides or TiO₂, calcium salt, mineralizers, and water or organic solvent in a Teflon-lined stainless steel vessel at 100-220°C [13-18].

Based on the hydrothermal method, rod-like and cubic-shaped CaTiO₃ particles were successfully synthesized by changing

temperature and Ti-sources such as TiO₂ and titanium-triethanolamine [13]. Three-dimension aggregated prisms, butterfly-like dendrites, and cross cubic shapes CaTiO₃ particles were prepared by controlling NaOH concentration during the hydrothermal process [14]. Single-crystalline hollow CaTiO₃ cubes can be produced through introducing 5% water during the solvothermal process [18]. Spherical, cubic, and rectangular CaTiO₃ particles can be obtained with varying content (1.25–5%) and addition order of water in the solvothermal process [17].

It has been widely reported that CaTiO₃ exhibits a superior photocatalytic performance in the removal of some organic and inorganic pollutants and the photolysis of water to hydrogen and oxygen [19–23]. The photodegradation percentage of methyl orange can reach to 96% using CaTiO₃ under ultraviolet light irradiation [12]. 98.4% of As(III) was oxidized to As(V) by photogenerated holes over fern-like CaTiO₃ nanoparticles [19]. Hydrogen production rate of 0.34 µmol/min was achieved with Pt-loaded CaTiO₃ as photocatalyst to decompose water [7]. CaTiO₃ shapes can affect its photocatalytic activity. Compared to flower-like and prism-like CaTiO₃, butterfly-like dendrites CaTiO₃ showed better photocatalytic activity to degrade rhodamine B [14]. Rectangular CaTiO₃ had higher activity than cubic and spherical ones for photocatalytic degradation of methylene blue [17].

Because of its wide band gap energy (3.5 eV), CaTiO₃ was photoactive only in ultraviolet light region. Recently, the metal

^{*} Corresponding author. Fax: +86 24 83687719. E-mail address: hanch@smm.neu.edu.cn (C. Han).

doping has been made to enhance the photocatalytic activity of CaTiO₃. For example, the photocatalytic activity of Ag-La codoped CaTiO₃ for hydrogen evolution increased dramatically than that of CaTiO₃ when the doping amount was 3 mol% [10]. Compared to CaTiO₃, CaTi_{1-x}Cu_xO₃ (0.1 \leq x \leq 0.04) exhibited a higher activity for the photocatalytic decomposition of water to oxygen and hydrogen [11]. Pt/CaTi_{0.9}Fe_{0.1}O₃ had a certain activity while Pt/CaTiO₃ was inactive under visible light for photocatalytic generation of hydrogen from methanol–water solution [21]. Our previous study found that the doping of Fe in CaTiO₃ can promote the photocatalytic degradation of methylene blue [5].

In this study, CaTiO₃ synthesized using the hydrothermal method was modified to enhance its photocatalytic activity by HNO₃ acidification. The changes in the structures, compositions, and properties of the modified CaTiO₃ were detailedly characterized using various means including X-ray diffractometer (XRD), scanning electron microscope (SEM), specific surface area analysis, Fourier transform infrared spectrometer (FTIR), Raman spectrometer, X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflection spectra (UV-vis DRS). The photocatalytic activity of CaTiO₃ was evaluated through the degradation of methylene blue (MB) under irradiation. Effects of HNO₃ acidification on the photocatalytic activity of CaTiO₃ were also discussed.

2. Experimental

2.1. CaTiO₃ synthesis

CaTiO₃ particles were synthesized by the hydrothermal method. In a typical process, solid $Ca(NO_3)_2 \cdot 4H_2O$ (2.362 g) was dissolved by water in the Teflon-lined stainless steel vessel. Tetrabutyl titanate (3.4 mL) was dropwise added into the solution under vigorous stirring. The molar ratio of Ca to Ti was 1.0. Then, solid NaOH (0.8 g) was introduced as the mineralization reagent. The mixture was continuously stirred at ambient temperature for 1.0 h. Subsequently, the hydrothermal treatment was carried out for 24 h at 200 °C. After cooling, the precipitates were recovered by the filtration, washed several times with ethanol, diluted acetic acid, and deionized water, and dried for 12 h at 80 °C.

2.2. HNO₃ acidification of CaTiO₃

The pH value of 20 mL deionized water was adjusted to 4 and 2, respectively, or the HNO $_3$ concentration in 20 mL deionized water

was adjusted to $2 \, \text{mol/L}$ using HNO₃. These water solutions containing HNO₃ were used to modify CaTiO₃. After the addition of CaTiO₃ (0.2 g), the corresponding acidic solution was continuously stirred to evaporate water at 50 °C. The sample was further dried for $24 \, \text{h}$ at $80 \, ^{\circ}\text{C}$ and then was calcined for $3 \, \text{h}$ at $500 \, ^{\circ}\text{C}$. Thus, the acidified CaTiO₃ by HNO₃ at pH 4, pH 2, and HNO₃ concentration of $2 \, \text{mol/L}$ was obtained. As a comparison, the not-acidified CaTiO₃ was also likewise treated without the addition of HNO₃.

2.3. CaTiO₃ characterizations

X-ray diffractometer (XRD, X'Pert Pro, PANalytical) with Cu Kα radiation at 40 kV and 40 mA was used to analyze crystal structures of CaTiO₃. A surface area & pore size analyzer (NOVA 1200e, Quantachrome) was employed to measure specific surface areas of CaTiO₃ by N₂ adsorption/desorption at 77 K. Specific surface areas were determined by applying the Brunauer-Emmett-Teller (BET) method to the adsorption isotherm in the partial pressure range of 0.05-0.35. Scanning electron microscope (SEM, SSX-550, SHI-MADZU) was used to observe micro morphologies of CaTiO₃. Fourier transform infrared spectrometer (FTIR, Thermo Nicolet-380) was adopted to investigate functional groups of CaTiO₃ with KBr as a pelletizing medium. A UV resonance Raman spectrometer (UVR DLPC-DL-03) was used to obtain Raman spectra of CaTiO₃. The exciting radiation was a continuous diode pumped solid state (DPSS) laser beam (325 nm), and the source power output was 60 mW. A surface analysis system (ESCALAB 250, Thermo Fisher Scientific) with an Al K α radiation was employed to record X-ray photoelectron spectroscopy (XPS) of CaTiO₃. The UV-vis diffuse reflection spectra (UV-vis DRS) of CaTiO₃ was recorded by a diffuse reflectance UV-vis spectrophotometer (2550, SHIMADZU) with BaSO₄ as the reflectance standard.

2.4. Photocatalytic activity test

The photocatalytic activity of CaTiO₃ was measured by decomposing MB in an aqueous solution under the irradiation of 500 W Xe lamp. During a typical MB removal experiment, CaTiO₃ (0.1 g) was dispersed into aqueous solution (200 mL) with initial MB concentration of 10 mg/L. Before irradiation, the aqueous suspension was magnetically stirred for 1.0 h to reach an adsorption/desorption equilibrium of MB on CaTiO₃ in the dark. Subsequently, the lamp was turned on and the photocatalytic

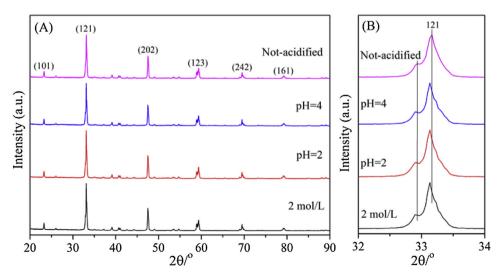


Fig. 1. XRD patterns of not-acidified and acidified CaTiO₃.

Download English Version:

https://daneshyari.com/en/article/26177

Download Persian Version:

https://daneshyari.com/article/26177

<u>Daneshyari.com</u>