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Building system design optimization is becoming popular for design decision making. State-of-the-art
technique that couples evolutionary algorithms with a building simulation engine, which is time con-
suming and often cannot reach the “true” optimal solutions. Studies addressing these issues focus on
implementing strategies such as fine tuning optimization algorithm’s parameters, hybrid evolutionary
algorithms with a local search algorithm or optimizing meta-models. Unlike the previous studies, this
paper proposes two improvement strategies for building system design optimization. The two strategies,
adaptive operators approach and adaptive meta-model approach, modify the behaviors of conventional
evolutionary algorithms to improve the optimization convergency and speed performance. To demon-
strate the effectiveness of these two strategies compared to conventional algorithms, a case study was
conducted. The case study observed high convergency performance from both strategies with 30% and
60% time savings respectively. Furthermore, this study examines the performance comparison in respect

to convergency, diversity preservation and speed between these two strategies.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In building design process, decisions are usually constrained by
multiple factors. Solutions that satisfy building owners’ require-
ments are commonly infeasible to reach by performing parametric
studies. Therefore, more efficient methods are needed in search-
ing the solution space to find optimal solutions, which not only
reduce the evaluation time, but also provide optimal designs to
achieve building owners’ investment goals. This raises the topic
of building system design optimization (BSDO) that uses advanced
optimization algorithms for searching for optimal design solutions.
The topic has increasingly drawn attention from the academic com-
munity, as well as the architecture, engineering and construction
(AEC) industry. Current studies well address the behavior of var-
ious optimization algorithms including pattern search methods
and stochastic methods [1]. These studies have also extensively
examined various objectives and levels of detail regarding single
system performance optimization and integrated building design
optimization [2]. In recent years, both academia and industry are
developing tools that support the ease of implementing optimiza-
tion in building design process. Tools such as MOBO [3], GenOpt
[4] and JEPlus [5] provide user-friendly interface and capability of
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coupling building design evaluation toolset (TRNSYS, EnergyPlus,
etc.) as well as allow stakeholders to explore their design options
more effectively.

Although BSDO has been actively discussed among academic
community for decades, it is still not a common technique used in
today’s typical building projects. One of the barriers is computation
time. A typical BSDO process could take days to find optimal solu-
tions. In order to reduce the computation time, many researchers
are looking for computational efficient strategies which can fully
utilize computational resources to boost the optimization speed
[6]. Although these researches did not address the computation-
ally expensive design evaluation process in BSDO, the strategies
proposed can effectively alleviate the impact of evaluation speed.

Such strategies can be categorized into three types, namely: par-
allel computing, model simplification and meta-model approaches
[1]. Parallel computing allows optimization algorithms distribut-
ing a number of simulation tasks into multiple process threads
simultaneously, thus reducing the overall computation time.
Implementation of this approach requires advance level of pro-
gramming skills, nevertheless, the majority of current energy
simulation software have included such features. Simplifying the
complexity of problems is another popular approach that fre-
quently appears in many studies. Such studies usually construct
a simple geometry layout with small amount of design variables.
However, simplification highly relies on expert knowledge and
designers have to take risks for losing building system interaction
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information, which may result in sub-optimal solutions. Lastly,
a meta-model approach that optimizes design parameters on a
“model of model” instead of real simulations can effectively find
optimal solutions in negligible time [7]. However, this method
requires a pre-computed database that contains design variables
and parameters for constructing the meta-model. Therefore, it
demands hundreds of energy simulations upfront. Furthermore, a
single meta-model is typically not general enough to adapt to dif-
ferent cases such as evaluating energy consumption for a building
in different climates.

In addition, literature review indicates that current practice has
no indication of optimization convergency, thus it is hard to exam-
ine whether the optimal solutions on pareto front curve are the
“true” optimized solutions. Secondly, the expensive computational
power of building energy simulation largely slows down the opti-
mization process, thus performing optimization studies are not
feasible at practice point of view. However, from these past studies,
some unique characters of evolutionary optimizations in building
designs are suggested:

e Anumber of design solutions may appear in multiple generations.

e Algorithm performance strongly depends on parameter settings
of operators.

¢ Alarge amount of energy simulations are produced in every gen-
eration and they are discarded in the next iteration.

e Energy simulations in every generation are mainly used for pro-
viding search directions towards the optimal region.

Utilizing the findings, this study proposes two separate improve-
ment strategies that change the behavior of the conventional
evolutionary algorithm. These two strategies focus on reducing
the number of building energy simulations at algorithm level and
achieving better optimal solutions. The first strategy relates to opti-
mize operator’s parameters setting by employing adaptive strategy.
This strategy transforms the algorithm’s behavior by updating its
operators’ parameters adaptively based on the current generation
performance so that the algorithm could dynamically optimize
its search power. The second strategy proposes a dynamic meta-
model based multi-objective optimization procedure. The idea of
this procedure is to marry machine learning techniques with opti-
mization procedure in order to enhance the algorithm’s searching
power. The above building optimization characteristics imply that
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optimization algorithms can potentially reuse all energy simu-
lations evaluated in the previous generations for constructing a
meta-model and employ this meta-model to adjust and advance
its exploration direction and speed. In addition, the meta-model
should be capable of self-update along with optimization pro-
cess for refining its prediction power. Implementing these two
strategies could reduce optimization time as well as improve the
convergency of optimal solution set. The detail implementation and
their performance in BSDO of these two strategies will be discussed
in this paper.

2. Method
2.1. Multi-objective optimization

BSDO is a complex problem and it is typically solved by evo-
lutionary algorithms with multiple conflicting objectives. Pareto
optimality is a frequently used method for analyzing BSDO opti-
mization results [2]. This method introduced a set of design
solutions as optimal solution set. In this solution, a unique situation
occurs where a single objectives adversely affects other objectives.
Fig. 1 shows data plot results of a typical optimization study. It can
be observed that there is no solution in this optimal solution set
(purple dots), which has both lower first and operation costs than
any other solutions in the same set.

A typical workflow for BSDO is summarized in Fig. 2. The
study objectives are goals that clients would like their build-
ings to achieve through optimization. Fitness functions are the
functions that perform energy simulations and post-process sim-
ulation outputs with respect to defined objectives. Design options
are a limited set of building system designs that clients want to
test on their properties. With defined objectives, fitness functions
and design options, the optimization algorithm can be initialized.
An initialization process usually involves setting the algorithm’s
parameters such as mutation probability and crossover probability
in genetic algorithms. Results generated in the process indicate that
the fundamental differences between single objective optimization
and multi-objective optimization is lying in the cardinality of the
optimal set. Although clients’ need only one solution to their prob-
lem, this is natural behavior of multi-objective optimization with
conflicting objectives because there is no single solution that per-
forms better at every objective than any other solutions. Since a
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Fig. 1. A typical MOO solution plot with pareto front curve. (For interpretation of the references to color in text near the reference citation, the reader is referred to the web

version of this article.)
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