
Energy and Buildings 121 (2016) 72–77

Contents lists available at ScienceDirect

Energy  and  Buildings

j ourna l ho me  pa g e: www.elsev ier .com/ locate /enbui ld

Unsteady  natural  convection  with  summer  boundary  conditions  in  a
habitat  at  high  Rayleigh  number  and  at  high  time

Kodjo  Kpode ∗,  Mamadou  L.  Sow, Cheikh  Mbow
Groupe de Mécanique des Fluides et Instabilités, Laboratoire de Mécanique des Fluides et Transferts, Département de Physique, Faculté des Sciences et
Techniques, Université Cheikh Anta DIOP, Dakar, Senegal

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 3 September 2015
Received in revised form 7 February 2016
Accepted 25 March 2016
Available online 29 March 2016

Keywords:
Unsteady natural convection
Multicell flow
Habitat
Nusselt number
Rayleigh number

a  b  s  t  r  a  c  t

A  numerical  study  of the  thermoconvective  instabilities  at high  time  in  a habitat  filled  with  Newtonian
fluid  is conducted.  The  gable  roof of  the  habitat  is subjected  to a heat  flux  of  constant  density,  and  its
side  walls  and floor  are, respectively,  adiabatic  and  isothermal.  Based  on  the Boussinesq  assumptions,
the  summer  thermal  and  dynamic  conditions  are  numerically  studied  using  unsteady  natural  convection
equations  formulated  with  vorticity  and stream-function  variables.  The  finite  volume  method  is used  to
generate  the  set  of equations,  which  are  solved  by  the iterative  under-relaxation  line-by-line  method  of
Gauss–Seidel.  Sudden  changes  in  the  average  Nusselt  number  and in  the  extreme  values  of the  stream
functions  at  Ra  = 1 × 108 show  that the  initially  unicellular  flow  in  a  pseudo-conductive  regime  becomes
a  multicellular  flow  with  the emergence  and  disappearance  of  cells.  In time  and  space,  the  change  of  the
flow  behaviour  is observed  more  rapidly  if  the active  walls  are  close  to the  cold  horizontal  wall.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Most work on natural convection inside a habitat has focused
on attic space, where the natural convection phenomena are a
priori sensitive. Thus, a cavity with a triangular cross-section is
used by many authors [1–5] to model the summer or winter ther-
modynamic conditions inside attic spaces. Flack [1] and Ridouane
et al. [3] showed that the flow remains laminar and stable even for
Gr = 2.84 × 106 if the cavity is heated from above. However, when
heated from below, the convection intensively develops as soon as
Gr = 105, and the flow becomes turbulent when the Rayleigh num-
ber exceeds 1 × 109 [6]. By studying heat transfer in model saltbox
and gambrel roofs, Varol et al. [7,8] observed that steady convec-
tion develops intensively at Ra = 106 in the case where the cavities
are heated from below, but with summer boundary conditions, the
transfers are dominated by conduction until Ra = 4 ×106. Saha et al.
[5] numerically analysed the stability of the flow when the inclined
walls of the triangular cavity are subjected to periodic thermal forc-
ing. They observed that, during the daytime heating stage, the flow
is stratified for Ra = 1.5 × 106, whereas in the night-time cooling
stage, the flow becomes unstable.

These studies show that in attic spaces, under summer condi-
tions, the contribution of transfer by conduction is dominant even
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for a Rayleigh number equal to 4 × 106. Because this area is adjacent
to the active inclined walls where most transfers occur, it is under-
standable in these conditions that most dynamic fluid studies are
restricted to the attic spaces. However, when the Rayleigh num-
ber may  be much higher, the study must be extended to the entire
habitat. In this work, the authors often used the Dirichlet thermal
boundary conditions. Indeed, they subjected the upper wall to a
constant or variable hot temperature that would presage the devel-
opment of the system to a steady state [9] or periodically oscillating
[5] state.

Therefore, we propose to study the unsteady natural convection
in a pentagonal cross section cavity under a heat flux of constant
density inducing more real conditions of a sunny day. The only fluid
dynamics study on this type of geometry, to our knowledge, is the
work of Walid and Ahmed [10] with a heat flux of constant den-
sity imposed on the floor at steady state. The present numerical
study is motivated by the interest to understand the heat propa-
gation and the air dynamics over time in a habitat with gable roof
subjected to a heat from solar radiation and the vertical walls ther-
mally insulated. It should be very useful for designers and builders
who can optimise the thermal comfort with the adequate height
of the walls. The moment of the total destabilisation of the system
and its reorganisation with the movement of all the fluid would
be a favourable time for efficient insecticide treatment because the
product can easily spread throughout the area. To this end, for a roof
inclination, the state of the system over time for a large Rayleigh
number will be analysed, along with the effect of the height of the
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Nomenclature

Nu mean Nusselt number
�V dimensionless velocity vector
A aspect ratio, = h/L
Cp specific isobaric heat capacity J kg−1 K−1

Gr Grashof number, =gˇL4q/(�2�)
h side height m
ho height of the attic space m
L half-base m
l third dimension m
Nu local Nusselt number
Pr Prandtl number, =�/˛
q wall heat flux W/m2

Ra Rayleigh number, = Gr Pr
S length of an incline wall m
t dimensionless time
To temperature of the base wall K
u, v horizontal and vertical dimensionless velocity coor-

dinates
x, y horizontal and vertical dimensionless coordinates

Greek Symbols
˛  thermal diffusivity m2 s−1

 ̌ coefficient of thermal expansion K−1

� angle rad
� thermal conductivity W K−1 m−1

� dynamic viscosity kg m−1 s−1

� kinematic viscosity m2 s−1

ω dimensionless vorticity
  dimensionless stream function
 min,  max minimum and maximum values of  
� density kg m−3

� dimensionless temperature, =� (T − To)/(qL)

side wall at three aspect ratios (ratio of the height to base) on the
transfer.

2. Physical model and the mathematical formulations

2.1. Physical domain

The physical system shown in Fig. 1 contains a Newtonian fluid.
Its physical properties are the dynamic viscosity �,  density �, ther-
mal  conductivity � and specific heat �cp. The inclined upper walls
are subjected to a heat flux of constant density q, the side walls are
adiabatic and the horizontal bottom wall is maintained at a uniform
cool temperature To.

Fig. 1. Physical system.

2.2. Assumptions and equations

From time t > 0, a constant heat flux q is applied to the inclined
walls. The thermodynamic balance is broken by the appearance of
buoyancy forces. To study this problem of thermoconvection, we
assume that the flow is two-dimensional. We  further assume that
the physical properties of the fluid are constant unless its density
in terms of gravity, which in a first approximation of Boussinesq
hypothesis, varies linearly with temperature. The reference param-
eters used to make the problem dimensionless are the half-base
L, L

2

˛ and qL
� , which, respectively, represent the length, time and

temperature gradient. In the stream function and vorticity formu-
lation, the non-dimensional equations of heat, vorticity and stream
function are, respectively, as follows:

∂�
∂t

+ �∇.( �V.� − �∇�) = 0 (1)

∂ω
∂t

+ �∇.( �V.ω − Pr. �∇ω) = Pr.Ra
∂�
∂x

(2)

�∇.(− �∇ ) = ω (3)

where   and ω are such that:

u = ∂ 
∂y
, v = −∂ 

∂x
and ω = ∂v

∂x
− ∂u
∂y

The above equations are complemented by the following initial
and boundary conditions:

when t = 0:

 (x, y, 0) = ω(x, y, 0) = �(x, y, 0) = 0

when t > 0:

• hydrodynamic conditions on the walls:

  = (�n. �∇)  = 0 and (�n. �∇)[(�n. �∇) ] = −ω

• thermal conditions on the inclined walls:

(�n. �∇)� = −1

• thermal conditions on the side walls:

(�n. �∇)� = 0

• thermal conditions on the bottom wall:

�(x, 0, t) = 0

where �n is the external normal vector to each wall.
The heat energy transmitted by the active inclined walls is

characterized by the Nusselt number. The local and mean Nusselt
numbers of an active wall are as follows:

Nu = 1
�p

Nu = 1
S

∫
S

Nuds

where �p is the instantaneous local temperature of the wall.
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