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a  b  s  t  r  a  c  t

Two  control-oriented  models  that  can predict  the  temperature  of  a perimeter  office  space  were devel-
oped  by  using  the  data  gathered  from  light  intensity,  motion  and  temperature  sensors,  and  terminal
heating  and  cooling  units.  One  model  had  five  unknown  parameters  while  the  second  had  ten  unknown
parameters  and  an  immeasurable  state.  The  models’  parameters  were  estimated  in recursion  by  employ-
ing the  Extended  Kalman  Filter.  The  appropriateness  of  the models  to  the dataset  was  analyzed  through
a  residual  analysis,  and  the  predictive  accuracy  of  the  models  was  contrasted.  Both  models  could  make
offline  predictions  over  a two  day  horizon  at less  than  0.75 ◦C mean  absolute  error.  It was  concluded
that  the  one-state  model  was  able  to  mimic  the  temperature  response  of  small  perimeter  office  spaces
parsimoniously.  The  one-state  model  was  implemented  inside  four building  controllers  serving  eight pri-
vate  office  spaces.  In tandem  with  Gunay  et al. [1]’s  occupancy-learning  algorithm,  the  one-state  model
was  employed  to determine  optimal  start  and  stop  times  for  the temperature  setback  periods.  Results  of
this  implementation  indicated  that  the duration  of the  weekday  temperature  setback  periods  could  be
increased  more  than  50%  for both  heating  and  cooling—in  contrast  to  the  default  control  scheme.  Energy-
Plus  simulation  results  suggest  that this  accounts  for about  30%  reduction  in  heating  and  13%  reduction
in  cooling  loads  without  affecting  the  indoor  air temperature  during  occupied  periods.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Integration of real-time sensory measurements into physical
models describing the heat transfer characteristics of a thermal
zone has found many applications in commercial buildings such
as: (a) the optimal start/stop scheduling of heating and cooling
units [2–5], (b) the model-based predictive control (MPC) algo-
rithms [6–9], and (c) the detection of envelope degradation and
operational faults (e.g., poorly-installed or water-saturated insu-
lation) [10–13]. However, selection of a physical model with a
parsimonious set of predictors, and subsequent identification of its
parameters are not trivial tasks [14].

Because a building’s physical characteristics and occupants’
behaviour change during the life of a building (e.g., changes in fur-
nishings, envelope degradation or retrofit), even models derived
from detailed physical descriptions and tuned from vast amount of
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historical data can become unrepresentative in time [15,16]. Mea-
surements from a small number of sensors and meters cannot be
used to innovate our understanding of a large thermal network
with many parameters and unmeasured states (e.g., wall temper-
atures) [17]. For example, when Maasoumy, et al. [18] employed
the Unscented Kalman Filter (UKF) algorithm to estimate ten dif-
ferent parameters and five states (by taking measurements for one
of these states), they observed that the parameters of heat trans-
fer can diverge to physically unreasonable values. When Kummert
et al. [19] employed a model with over fifty parameters, this issue
was tackled by keeping the majority of these parameters constant
during operation and letting only very few of them change in time.
But, acquiring accurate prior estimates for the parameters that are
held constant requires historical operations data and can be labour-
intensive to gather. Moreover, it requires the creation of a detailed
physical model that accurately represents the building’s as-built
geometry, thermophysical properties of its materials, air leakage
and distribution characteristics, and internal heat gains and oper-
ational schedules. Furthermore, given the distributed nature of the
computational power to the local controllers in individual ther-
mal  zones, it is challenging and impractical to implement detailed
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Nomenclature

T1 Temperature at model node 1 (◦C)
T2 Temperature at model node 2 (◦C)
Tm Measured temperature (◦C)
Tout Outdoor air temperature (◦C)
Tda VAV terminal unit’s supply air temperature (◦C)
C1 Thermal capacitance at model node 1 (J ◦C−1)
C2 Thermal capacitance at model node 2 (J ◦C−1)
R1 Thermal resistance at model node 1 (◦C W−1)
R2 Thermal resistance at model node 2 (◦C W−1)
Q rads Heat gains due to radiant panel heaters (W)
Q int Casual heat gains (W)
Q sol Solar heat gains (W)
Q vav Heat gains from the VAV terminal unit (W)
qvav Volumetric airflow rate (L/s)
Elux Photodiode sensor illuminance reading (lux)
Occ Occupancy (1 present, 0 absent) (0 or 1)
Rads Radiant panel heater valve position (1 open, 0

closed) [0,1]
�arr Mean of the first arrival times (h:m)
�arr Standard deviation of the first arrival times (h)
�dpt Mean of the last departure times (h:m)
rabs Ratio of absent weekdays
Tsp Setpoint temperature (◦C)
Tsb Setback temperature (◦C)
qvav,sp VAV terminal unit’s supply airflow rate setpoint

(L/s)
Tda,sp VAV terminal unit’s supply air temperature setpoint

(◦C)
Dsb Mean weekday temperature setback periods (h)
t Time or current time (s)
k Timestep index
x Model parameters and states
u Sensory model inputs
w Wiener process
v Measurement noise
Q Covariance of the process noise
R Covariance of the measurement noise
P Covariance of the model
F Jacobian of the model
H Jacobian of the measurement model
K Kalman gain
I Identity matrix

physical models within existing building automation systems (BAS)
[20].

In recognition of the challenges associated with detailed phys-
ical models, researchers have been developing either purely
empirical (e.g., neural networks) models [21–23] or grey-box mod-
els that are loosely attached to the physical problem (e.g., low-order
state-space models) [6,20,24–27]. Due to their simplicity, these
models can adapt to changing conditions autonomously with the
use of empirical data gathered through a small number of sen-
sors/meters [28,29].

1.1. Research objectives and outline

This paper presents two control-oriented models which can pre-
dict the temperature response of a perimeter office space using a
small number of low-cost building sensors that are typically built-
in for standard building operations. The models recursively learn
their parameters by employing the Extended Kalman Filter (EKF).
The models were developed using the sensory data gathered from

three private office spaces. Upon the model development, one of
the models was selected and implemented inside local building
controllers serving eight ceiling-mounted radiant panel heaters
and two variable air volume (VAV) terminal unit. The model was
utilized to compute the length of the setback-to-setpoint transi-
tion period. Implementation challenges and results were analyzed.
Energy savings potential was  investigated through the simulations
of the monitored offices’ EnergyPlus model.

2. Methodology

2.1. Measured data

Experiments were conducted in three west-facing private
offices of identical construction and geometry in an academic
building in Ottawa, Canada. The following data were collected
throughout the experiments: occupancy (Occ), indoor and outdoor
air temperature (Tm, Tout), indoor light intensity (Elux), ceiling-
mounted radiant panel heater state (rads), and the variable air
volume (VAV) terminal unit’s discharge air temperature (Tda)and
airflow rate (qvav). The sensor locations and office layout are shown
in Fig. 1.

One of these offices (room 1) was  monitored over a 98 day
period. During this monitoring period, the outdoor temperatures
have changed from −10 to 30 ◦C. During the seasonal switch over
to cooling (until May  6), the indoor temperatures exceeded 30 ◦C.
Two of the offices (rooms 2 and 3) were monitored over a 40 day
period during the cooling season. Thus, the radiant panel data were
not gathered in rooms 2 and 3. Ventilation and cooling for the rooms
1 and 2 were provided by the same VAV unit. Thus, they share the
same discharge air temperature and airflow rate data records. The
photodiode-based indoor light intensity sensors (spectral response
range 350–1100 nm and 60◦ field of view) were placed on the ceil-
ings at identical locations in each office. They were able to measure
the light intensities between 0 and 1076 lx. On a few sunny after-
noons, the sensor reached to its upper limit (1076 lx)—meaning
that the indoor light intensity was  likely slightly more than the
1076 lx. The indoor, outdoor and the VAV unit’s discharge air tem-
perature were measured by employing 10 k� thermistor sensors.
The VAV unit’s discharge airflow rate was computed by multiplying
the square root of the discharge air pressure sensor by a constant.
The value of the constant was  selected from ASHRAE [30] based
on the size of the VAV unit’s inlet diameter (356 mm). The occu-
pancy data were generated from the movements detected by the
passive-infrared (PIR) motion sensors—5 m range and 100◦ hori-
zontal and 80◦ vertical coverage (symmetrical about the sensor
normal). In a time frame of fifteen minutes, if a movement was
detected, the room was assumed occupied. This time delay value
was selected in line with prior research [31–33] and after analyzing
the empirical likelihood distribution of observing a movement as
a function of the time-elapsed since the last movement detection
[34]. Fig. 2 presents the sensory data extracted from the archiver of
the BAS in 15 min  timesteps—this was the default sampling rate in
the controls network. Because a control-oriented model needs to
make predictions in presence of uncertainties typical to a commer-
cial BAS instrumentation, the instrumentation was not upgraded or
calibrated specifically for this study—i.e., the instrumentation was
assumed as-is. Simply put, if the errors due to the instrumentation
and the models were excessive, the model would fail to represent
the temperature response in the prediction time horizon anyways.

2.2. Control-oriented models

In the monitored perimeter office spaces, the heat transfer is
governed by environment, occupant and HVAC-driven loads. The



Download English Version:

https://daneshyari.com/en/article/262175

Download Persian Version:

https://daneshyari.com/article/262175

Daneshyari.com

https://daneshyari.com/en/article/262175
https://daneshyari.com/article/262175
https://daneshyari.com

