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a  b  s  t  r  a  c  t

This  paper  analyzes  the suitability  of  Gaussian  processes  for thermal  building  modelling  by comparing
the  day-ahead  prediction  error of the  internal  air  temperature  with a grey-box  model.  The  reference
building  is a single-zone  office  with  a hydronic  heating  system,  modelled  in  TRNSYS  and  simulated  during
the winter  and spring  periods.  Using  the  output  data  of  the  reference  building,  the  parameters  of  a
Gaussian  process  and  of  a physics-based  grey-box  model  are  identified,  with  training  periods  ranging
from  three  days  to  six  weeks.  After  three  weeks  of training,  the  Gaussian  processes  achieve  27%  lower
prediction  errors  during  occupied  times  compared  to the  grey-box  model.  During  unoccupied  times,
however,  the  Gaussian  processes  perform  consistently  worse  than  the  grey-box  model.  This is  due  to
their large  generalization  error,  especially  when  faced  with  untrained  ambient  temperature  values.  To
reduce the  impact  of  changing  weather  conditions,  adaptive  training  is applied  to  the  Gaussian  processes.
When  re-training  the  models  every  24  h,  the prediction  error  is  reduced  over  21%  during  unoccupied  times
and over  10%  during  occupied  times  compared  to the  non-adaptive  training  case.  These  results  show  that
the  proposed  Gaussian  process  model  can  correctly  describe  a building’s  thermal  dynamics.  However,  in
its current  form  the model  is limited  to applications  where  the  prediction  during  occupied  times  is more
relevant.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In recent years there has been an increased research interest in
model predictive control (MPC) for buildings [1], which calculates
the optimal control inputs for the heating, ventilation and air condi-
tioning (HVAC) system based on some optimization criterion, such
as energy consumption. Because MPC  requires models of the build-
ing and of its subsystems, it is the objective of this paper to evaluate
the suitability of Gaussian processes (GPs) [2], a machine learning
method, for this purpose. The suitability of the model is evaluated
based on the day-ahead prediction error of the building’s internal
air temperature and on its generalization error, i.e. the error caused
by testing the model with untrained input data.

In the literature there are diverse examples of the use of GPs
for building applications, although most focus on energy consump-
tion rather than thermal dynamics. Ghosh et al. [3] propose a
‘latent force’ model aimed at correctly describing the internal air
temperature in a residential building. The model consists of a com-
bination between a simplified grey-box model and a stochastic
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term modelled with a GP. The GP term compensates the system-
atic errors of the grey-box model, improving the predictions. Heo
and Zavala [4] develop GP models to calculate energy savings and
uncertainty levels in measurement and verification practices for
retrofitted buildings. They compare the GPs to a linear regression
method, showing that the GPs are able to represent the nonlin-
ear behaviour of the system. Manfren et al. [5] implemented a GP
model to estimate monthly electricity and natural gas consump-
tion in a retrofitted building, obtaining similar results compared
to a detailed model. Yan and Malkawi [6] use GPs to predict cool-
ing and heating consumption and compare it to a neural network
model, showing that their prediction accuracy is similar. To the best
of the authors’ knowledge, there are no published studies that ana-
lyze the day-ahead temperature prediction capabilities of Gaussian
process models.

This paper advances the state of the art by developing and
evaluating a GP regression model to predict the day-ahead zone
temperature in a building. The GP is subject to different inves-
tigations, which include the selection of the mean function, the
covariance function and the input set, the variation of the training
period, an evaluation of the generalization error and adaptive train-
ing. The results obtained with the GP are compared to a grey-box
model based on simplified thermal resistance-capacitance circuits,
a modelling method often used in the literature [7–11].
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Nomenclature

Symbol
cH2O specific heat capacity of water, J/(kg K)
cp,air specific heat capacity of air, J/(kg K)
Czone zone heat capacity, J/K
Cwall wall heat capacity, J/K
Crad radiator heat capacity, J/K
DoW day of week, –
GB grey-box model, –
GP Gaussian process model, –
hair enthalpy of air, J/(kg K)
HoD hour of day, –
HSch heating schedule, –
HVAC heating, ventilation and air-conditioning, –
I identity matrix, –
k(·) covariance function, –
kSE(·) squared exponential covariance function, –
kMatérn(·) Matérn exponential covariance function, –
K covariance matrix, –
� characteristic length-scale, –
m(·) mean function, –
ṁ heating medium mass flow, kg/s
ṁair mass flow of the infiltrated air, kg/s
MPC  model predictive control, –
n number of observations/measurements, –
ninf infiltration rate, h−1

nrad radiator exponent, –
Nocc number of occupants, –
Q̇N radiator norm heating power, W
Q̇rad heat flow rate between the heating medium and

radiator, W
Q̇sol solar gains, W
Q̇wall,amb wall-ambient heat flow rate, W
Q̇zone,rad zone-radiator heat flow rate, W
Q̇zone,wall zone–wall heat flow rate, W
r Euclidean length of u − u′, –
Rwall,amb wall-ambient thermal resistance, W/K
Rzone,rad zone-radiator thermal resistance, W/K
Rzone,wall zone-wall thermal resistance, W/K
RMSE root mean square error of the zone temperature pre-

diction, K
RMSEtotal total RMSE, K
RMSEo RMSE during occupied times, K
RMSEuo RMSE during unoccupied times, K
u input, –
u input vector, –
U matrix with input vectors, –
Vzone volume of the zone, m3

y output, –
y output vector, –
�Ḣair net enthalpy rate due to air infiltration, W
�ϑlg,N norm logarithmic temperature, K
ϑamb ambient temperature, ◦C
ϑwall wall temperature, ◦C
ϑrad radiator temperature, ◦C
ϑsupply supply temperature of the heating medium, ◦C
�test the GP’s predicted mean value, –
� hyperparameter of the Matérn kernel, –
�air density of air, kg/m3

�2
� variance of the noise in the measurements, –

Table 1
General characteristics of the reference building, heating system and occupancy
data.

Characteristic Value Units

Number of zones 1 –
Floor area 800 m2

Zone height 3.5 m
Window area 60 m2

Glazed faç ade 14 %
Window orientation South –
Window U-value 1.4 W/(m2 K)
Wall U-value 0.339 W/(m2 K)
Ceiling U-value 0.233 W/(m2 K)
Volumetric infiltration rate 0.2 n−1

Temperature setpoint 23 ◦C
Radiator exponent 1.33 –
Radiator area 46.8 m2

Cooling system Not present –
Occupied hours 7:00–19:00 –
Occupied days Monday to Friday –
Number of occupants 25 Persons
Gains per occupant 120 W
Office equipment gains 200 W/occ.
Lighting gains 5 W/m2

Lighting schedule 7:00–9:00 and 16:00–19:00 –

2. Modelled building

The modelled building consists of an office located in Stuttgart,
Germany. The building is well-insulated and has a south-facing
window. Based on the building’s characteristics (see Table 1) and
using the DIN 12831 [12] and VDI 6030 [13] standards, a radiator-
based heating system was designed. The reference building was
modelled using TRNSYS 17 [14] with a 15-min time step, from
where the data used for training the grey-box and the GP mod-
els is obtained. The controller, the grey-box model and the GP
models were implemented in Matlab [15]. In order to control the
TRNSYS building with a Matlab-based controller, the BCVTB co-
simulation platform was used [16]. The weather data corresponds
to the Meteonorm file for Stuttgart, which is included in TRNSYS 17.

The heating system operates on a predefined schedule, begin-
ning at 4:00 am and is turned off at 19:00. The zone temperature
control is done using thermostatic valves, which are modelled as
a proportional-integral (PI) controller. By opening or closing the
valves, the mass flow through the radiators is regulated. The other
control input, the supply temperature of the heating medium, is
defined with a lookup table that has a linear dependence on the
ambient temperature, having a maximum value of 60 ◦C. The occu-
pancy profile and the internal gains due to the occupants, office
equipment and lighting are presented in Fig. 1. The lighting sched-
ule is from 7:00 to 9:00 and 16:00 to 19:00.

3. Grey-box model

The grey-box model in this paper is based on physical principles
but simplifies the mathematical system description by ‘lumping’
certain parameters. For example, instead of describing each wall in
function of the dimensions and properties of the different layers
that constitute it, it is represented by aggregated (‘lumped’) values
describing the thermodynamic properties of the wall as a whole,
such as the overall heat transfer coefficient and total heat capacity.

3.1. Model description

The structure of the grey-box model is analogous to electri-
cal resistance-capacitance (RC) networks, the electrical resistance
being replaced by the thermal resistance between thermal nodes
(states) and the capacitance by the heat capacity of the nodes (see
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