Contents lists available at ScienceDirect

Energy and Buildings

journal homepage: www.elsevier.com/locate/enbuild

A review on optimization techniques for active thermal energy storage control

Ryozo Ooka^{a,*}, Shintaro Ikeda^b

^a Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
^b Department of Architecture, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

ARTICLE INFO

Article history: Received 25 January 2015 Received in revised form 8 July 2015 Accepted 11 July 2015 Available online 21 July 2015

Keywords: Thermal energy storage Smart energy systems Optimization control Mixed-integer linear programming Metaheuristic methods

ABSTRACT

The increasing popularity of smart energy systems has led to a gradual increase in the importance of thermal energy storage (TES) technology. Thus, the control strategy employed to efficiently take advantage of TES is expected to be very important. In other words, the time schedule, the particular components to be activated, and the amount of charging/discharging have to be appropriately determined. To date, a number of studies have investigated the optimization of TES operations by using optimization techniques. Current methods being used to achieve optimal TES operation are reviewed in this paper.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the recent growing awareness of global environmental issues and energy problems, smart energy systems based on different forms of renewable energy are attracting increasing attention. However, the temporal mismatch between energy supply and demand is one of the important challenges with which smart energy systems are confronted. Thermal storage systems designed to bridge this mismatch by removing heat from or adding heat to a storage medium for use at another time, and the thermal energy storage (TES) on which they depend, are therefore facing increasing expectations in terms of performance.

In addition, TES also plays an important role in increasing the overall system efficiency. A heat source machine is able to generate heat to meet demands at efficient partial load, because TES enables it to release heat during the daytime. The highest efficient load rate of many heat source machines shifts from rated load to partial load because the latest machines include inverters to enable them to vary their power output. Although TES is a significant technology, determining its optimal operation is not straightforward. The necessity to consider operation balancing, not only during a certain time interval, but also across whole time horizons, arises because of the capability of TES to transfer thermal energy from one

http://dx.doi.org/10.1016/j.enbuild.2015.07.031 0378-7788/© 2015 Elsevier B.V. All rights reserved. time period to another, as mentioned above. Therefore, to date, a number of studies using optimization techniques to determine the optimal operational conditions have been conducted.

Previous papers in which optimal TES control has been reviewed include the following. Wang and Ma [1] provided the frameworks of control functions and optimization techniques for HVAC systems including TES control. Sun et al. [2] presented a classification of load shifting control and reviewed the present status of optimal control. Shaikh et al. [3] reviewed optimized control systems for building energy and comfort management. However, application of optimal techniques to active TES is still becoming more and more popular and a number of the techniques are increasing. It is useful for engineers and operators to clarify characteristic of each optimal technique proposed in the previous works. Thus, TES control techniques that are presently considered optimal are reviewed in this paper.

2. Overview of TES

TES is normally used for cooling or heating and stores heat during off peak periods for later use. That is, it discharges heat during peak energy use periods such that overall energy costs are reduced. These systems can either be "active" or "passive." Passive TES refers to those systems that use some part of the building mass, or contents, to store heating or cooling capacity [4]. Active TES generates heat, which it then actively stores to a thermal storage material with the purpose of using the cooling and heating effect at a later time and differs from Passive TES in that it is

^{*} Corresponding author. Tel.: +81 3 5452 6431; fax: +81 3 5452 6432. *E-mail address*: ooka@iis.u-tokyo.ac.jp (R. Ooka).

Table 1

Summary of the studies that focused on active TES optimization control.

Ref.	Year	Case study	Storage type	Objective	Algorithm
5]	1997	Office building	Ice storage	Operating cost	DP
6]	2002	Office building	Cold water storage	Operating cost	OPTCON
7]	2003	Office complex	Cold water storage	Operating cost	quasi-Newton method
8]	2003	Simple-cooling plant	Ice storage	Operating cost	DP
9]	2004	Office building	Passive thermal and cold water storage	Operating cost	quasi-Newton method
10]	2005	Commercial building	Ice storage	Initial cost and Operation cost	DP
[1]	2006	Commercial building	Ice storage	Operating cost and energy consumption	Comparison of three cases
12]	2009	Office building	Ice storage	Life cycle cost	PSO
13]	2009	University Campus	Cold water storage	Operating cost	MINLP
14]	2010	Hotel	Water storage	Combination of primary energy saving ratio, annual total cost and CO ₂ emission reduction	PSO, GA
15]	2010	Housing Complex	Water storage	Primary energy	MILP
16]	2010	Hospital Building	Water storage	Operating cost	MINLP
17]	2011	Power plant	Ice storage	Operating and capital cost	GA
18]	2011	Laboratory test	Passive thermal and ice	Operating cost	The direct search complex
1	2012	Office building	storage Passive thermal and ice	Operating cost	method The direct search complex
[19]	2012	Office building	storage	Operating cost	method
20]	2012	Residential building	Water storage	Annual energy cost	GA
20]	2012	Office building	Ice storage	Lifetime cost	MILP
	2012	House, Industrial building	Water storage	The amount of energy exchanged by	Fuzzy logic and Active set
[22]	2012	House, muustriai bununig	Water storage	buildings and the electricity grid.	algorithm
23]	2012	House	Water storage	Electricity charge, Electricity grid. Electricity charge, Electricity consumption, Surplus energy from PV, and Marginal fuel cost	MILP
24]	2013	Commercial building	Battery storage, Water storage, Ice storage	Lifetime cost	MILP
25]	2013	Commercial building	Ice storage	Operating cost	YALMIP
26]	2013	Smart grid	Water storage	Total annual cost	EPoMP
27]	2013	CHP-based micro grid	Battery storage, Water storage	Operating cost, Pollutant emission	MBFO
28]	2013	District energy system	Water storage	Total investment and operating cost, Environmental impact	EP, MILP
29]	2013	Office building	Water storage	Operating cost	Fuzzy, Predictive control
30	2013	Commercial building	Ice storage	Operating cost, System performance	GA
31]	2013	Distributed energy system	Battery storage, Water storage, Ice storage	Total annual cost	MILP
32]	2014	Distributed energy system	Water storage	Daily operating cost, Daily primary energy consumption	DP
33]	2014	Distributed energy system	Aquifer thermal energy storage, Bore hole thermal energy storage	Total annual cost	MILP
34]	2014	Building for commercial and industrial sectors	Thermal energy storage	Power system operating cost	Original
[35]	2014	Micro-grid	Water storage	Operating cost and pollutant emission	Original
36]	2014	Housing complex	Water storage	Primary energy consumption	MILP

Abbreviations: DP: Dynamic programming, MILP: mixed-integer linear programming, MINLP: mixed-integer nonlinear programming, GA: genetic algorithm, PSO: particle swarm optimization, EP: evolutionary programming.

controllable. In this paper, we focus on the optimal control of active TES. TES is generally classified into three types: sensible heat storage (where heat is stored simply by changing the temperature of a material), latent heat storage (where heat is stored by changing the phase of a material), and chemical storage (where heat is stored in reversible, endothermic reactions and recovered by the corresponding exothermic reaction). Water is often used for thermal storage material because it is cost effective, readily available, has a relatively large heat capacity, and is neither toxic nor explosive. Moreover, ice has a relatively large latent heat of 335.2 kJ/kg compared to that of other thermal storage materials. Thus, both water and ice TES are widely used for air conditioning systems in general buildings.

3. Survey results for optimization control

The publications included in our literature survey are listed and briefly summarized in Table 1.

3.1. Classification of control strategy

The strategy we followed in this paper to classify TES control strategies follows that used in previous research [2,5] as shown in Fig. 1. The authors [2] modified the classification. Control strategies can be classified into heuristic and optimal control and in our work we focused on the latter.

3.2. Objective functions

According to the literature listed in Table 1, the objective of optimizing the TES control strategy is generally to minimize the operating cost, including both the energy cost and peak demand cost in many cases. This objective is described by the following equation [1,5]:

$$J = \min\left(\sum_{i=1}^{n} \alpha_i \times E_i + \beta \times \max_{1 \le i \le n} \left\{ \mathsf{PD}_i \right\} \right)$$
(1)

Download English Version:

https://daneshyari.com/en/article/262318

Download Persian Version:

https://daneshyari.com/article/262318

Daneshyari.com