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a  b  s  t  r  a  c  t

This paper  offers  a novel  method  to  rank  residential  appliance  energy  efficiency  utilizing  energy  efficiency
frontiers.  The  method  is  validated  using  a  real-world  case  study  of 4231  buildings  in Ireland.  Our results
show  that  structural  factors  have  the  largest  impact  on  energy  efficiency,  followed  by socioeconomic
factors  and  behavioral  factors.  For  example,  households  with  high  penetration  of efficient  lightbulbs  and
double-glazed  windows  were  on  average  4 and 3.5%  more  efficient  than  others.  Households  with  the
head  of  household  having  higher  education  are  on average  1.3%  more  efficient  than  their  peers.  Finally,
households  that track  their  energy  savings  are  on  average  0.4%  more  efficient  than  others.

Furthermore,  installing  heater  timers,  wall  insulation,  and  living  in owned  residences  were  correlated
with  higher  efficiency.  Generally,  families  with  kids  who  have  full-time  employment  and  are  highly-
educated  are  more  efficient  compared  to families  with  no  kids,  or families  with  retirees  or  unemployed
members.  This  result  has  important  implications  for both  targeting  and  messaging  of  energy  efficiency
programs.

Some behavioral  factors  demonstrated  significant  impact  on  appliance  energy  efficiency.  For  instance,
households  that  expressed  interest  in  making  major  energy-saving  lifestyle  changes  scored  higher  effi-
ciency ranks  on  average.  Conversely,  households  that  expressed  doubt  about  their  motivation  to  save
energy  ranked  lower  in efficiency.  This finding  validates  the role  of  educational  programs  to  increase
awareness  about  energy  efficiency  and  its importance.

In  short,  our  results  show  that  a data-driven  analysis  of a population  is  needed  to  develop  a  balanced
view  of the  drivers  of  energy  efficiency,  and  to devise  a  targeted  approach  to improve  homes’  energy
efficiency.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Residential buildings consume about 22% of total primary
energy in the US [22]. Appliances account for more than 20%
of residential energy consumption (US Buildings Data Book, US
DOE, 2014). Thanks to improved manufacturing standards, the
efficiency of newly-manufactured appliances has improved signif-
icantly over the past few decades [1]. However, this improvement
has not resulted in proportionate reduction in appliance energy
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consumption in homes [22]. Such discrepancy can be attributed to
lower than expected penetration of efficient appliances, increased
use of efficient appliances (rebound effect), or keeping old appli-
ances such as refrigerators after purchasing a new more efficient
system. In fact, even across similar buildings, the energy con-
sumption levels for similar appliance saturation levels are widely
variable [2].

Utilities spend millions of dollars annually to improve appliance
energy efficiency. For example, in California alone in 2013, utilities
spent $80 M on appliance and plug load efficiency programs, the
highest expenditure among all utility energy efficiency programs
(CPUC, 2013). To improve the effectiveness of energy efficiency
programs, utilities need to identify and address a group of homes
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with higher potential for energy reduction, in a process called
“targeting” [3–5]. Estimating appliance energy usage efficiency
is a critical step in targeting. The most widely known methods
for estimating appliance consumption are: Sub-Metering [6],
Non-Intrusive Load Monitoring (NILM) [7], and Conditional
Demand Analysis (CDA) [8]. Sub-metering involves installing
separate energy meters for appliances, and monitoring their
loads individually. While highly accurate, sub-metering requires
an extensive metering infrastructure that currently renders it
impractical for large-scale applications. NILM methods analyze
high-frequency energy consumption data (often on the sub-
second frequency), and estimate individual appliance energy
consumption. The high-frequency data requirements (sub-second
load) and high computational power needed to analyze the data
make NILM impractical for most common applications. The least
data-intensive method of the three, CDA estimates appliance own-
ership using regression analysis of monthly bills. Due to its use of
aggregate load, CDA is not able to identify the sub-monthly trends
of energy efficiency, such as the difference between weekdays and
weekends. There is a need for a method that could leverage 15-min
or 30-min interval energy consumption data that most utilities
collect using their smart meter networks.

This paper presents a method to rank residential buildings based
on their appliance energy efficiency. The method is based on the
previous work on Stochastic Energy Efficiency Frontiers (SEEF),
a dynamic method to estimate energy efficiency using an input-
output framework. To our knowledge, this is the first work that
uses smart meter interval data to estimate energy efficiency of
appliances, without disaggregating the load into its components.
To illustrate the method in a real-world setting, we use a database
of more than 4000 households in Ireland.

The following sections first introduce the experimental data,
followed by the model setup, results, and insights.

2. Experimental data

A data set of 4231 households in Ireland was used to illustrate
the appliance efficiency ranking method. The experimental data
set includes electricity consumption (30-min interval) from July
20th, 2009 through December 26th, 2010 for a total of 525 days.
In addition, the data set includes a detailed list of dwelling char-
acteristics, as well as demographic and socioeconomic data about
participant households [9]. Table 1 summarizes appliance owner-
ship data. Figs. A1–A4 in Appendix show the summary statistics of
important household variables.

No information on the location of individual homes was
released. However, our analysis of weather data from weather
stations across Ireland shows that the weather conditions are

Table 1
Summary of appliance ownership on CER data.

Appliance Count (total n = 4231)

0 1 2 3+

Washing machine 51 3516 25
Clothes dryer 1136 2451 5
Dish washer 1161 2422 9
Instant hot shower (electric) 1085 2298 189 20
Shower pump 2529 968 82 13
Cooker 820 2761 10 1
Electric heater 2594 800 162 36
Freezer 1805 1718 65 4
Water pump 2893 684 14 1
Immersion heaters 845 2736 11
TV  34 919 1333 1306
Computer 1867 1620 13 5
Laptops 1638 1546 296 112
Gaming consoles 2352 828 305 107

reasonably consistent across the geographic areas. Thus, we used
the average readings from three weather stations across Ireland as
an estimate of users’ weather for our analyses.

There are three sources for temporal fluctuation in energy
consumption of a house over time: climate and seasonal effects,
lifestyle effects, and random effects. Lifestyle effects are individ-
ual temporal patterns of energy consumption of users that are not
explained by external variables such as a change in seasons or out-
side temperature. Lifestyle effects impact both timing and end uses
of energy.

Climate and seasonal effects are outside the control of the house-
holds and should not impact energy efficiency ranking. For our
purposes, we  also do not include lifestyle effects in our energy
efficiency ranking. Other studies with a behavioral or conservation
focus might find lifestyle effects particularly interesting for energy
reduction purposes. The next sections briefly explain controlling
for climate, seasonal, and lifestyle effects.

2.1. Controlling for weather and seasonal effects

Fig. 1 shows the relationship of daily consumption with outside
temperature and day of week in our data set. Each individual home
is different in the way that it is affected by outside temperature.
Fig. 1(b) shows the distribution of the correlation of outside temper-
ature with daily total consumption for individual houses. As seen
the correlations range from −0.8 (highly negatively correlated) to
+0.4 (moderately positively correlated). Finally, as Fig. 1(c) shows,
consumption also has a strong relationship with day of week—the
total consumption on the weekends is on average 0.83 kW h higher
than weekdays.

To account for weather and seasonal effects, an individual time-
series regression model was  fit to each house. The model covariates
include temperature, day of week, and month variables. For ease of
reference, we call this model the S&T model, standing for “Seasonal
and Temperature” model.

yi = ai +
∑

j

bijTij +
∑

j

cijDj +
∑

j

dijMj + εi

i = 1, 2, . . .,  K buildings; j = 0, 1, 2, . . .,  525 days

where Tij outside temperature reading for building i at day j; Dj day
of week on day j of the data; Mj month of year on day j.

The estimated coefficients (b̂ij) are then used to calculate nor-
malized energy consumption, by assigning a reference temperature
(10 ◦C or 65 ◦F depending on the data unit) to all households, and
calculating their hourly consumption using the regression model.

ỹi = ai +
∑

j

b̂ijT̃ij + εi i = 1, 2, . . .,  K; j = 1, 2, . . .,  24;

T̃ij = 65F  ∀i, j

Fig. 2 shows total daily consumption before and after normaliz-
ing for weather components.

The coefficient of determination (R2) of the S&T model for each
household provides useful insights for energy efficiency planners.
Especially, it is an indication of the ratio of the total load that goes
towards electrical heating and cooling. A high value for R2 can be
interpreted in several ways: (a) high heating and cooling load; (b)
low non-heating and non-cooling loads, leading to a higher ratio of
total load that goes towards heating and cooling; and (c) regularly
and frequently-occupied house, resulting in a significant seasonal
effect. In any of these cases, houses with high R2 values have high
sensitivity to seasonal and temperature effects. Therefore, they are
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