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a  b  s  t  r  a  c  t

This  study  developed  two model  predictive  control  (MPC)  algorithms,  a certainty-equivalence  MPC and  a
chance-constrained  MPC,  for  indoor  thermal  control  to minimize  energy  consumption  while  maintaining
occupant  thermal  comfort.  It is  assumed  that  occupant  perceptions  of thermal  sensation  can  be  contin-
ually  collected  and  fed  back  to calibrate  a dynamic  thermal  sensation  model  and  to update  the  MPC.  The
performance  of  the  proposed  MPCs  based  on Actual  Mean  Vote  (AMV)  was  compared  to  an  MPC  using
Fanger’s  Predicted  Mean  Vote  (PMV)  as  the  thermal  comfort  index.  Simulation  results  demonstrated  that
when the  PMV  gives  an  accurate  prediction  of occupants’  AMV,  the  proposed  MPCs  achieve  a  comparable
level  of energy  consumption  and  thermal  comfort,  while  it reduces  the  demand  on continually  sensing
environmental  and occupant  parameters  used  by  the  PMV  model.  Simulation  results  also  showed  that
when  there  is a discrepancy  between  the  PMV  and  AMV,  the  proposed  MPC controllers  based  on  AMV
expect  to  outperform  the PMV  based  MPC  by  providing  a better  outcome  in indoor  thermal  comfort
and  energy  consumption.  In addition,  the proposed  chance-constrained  MPC  offers  an  opportunity  to
adjust  the  probability  of  satisfying  the thermal  comfort  constraint  to  achieve  a balance  between  energy
consumption  and  thermal  comfort.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Reducing building energy consumption and providing a bet-
ter indoor thermal condition not only improves the environmental
quality due to reduced emission rate, but also keeps people more
productive at work and away from building health related prob-
lems. Current building control algorithms are mainly rule based
(if-then-else based rules) and thus the performance of a large num-
ber of buildings heavily depends on the experience of building
managers. In recent years, various advanced control techniques,
such as fuzzy logic control [1,2], agent-based intelligent control [3],
neural network control [4], optimal control [5], and model predic-
tive control [6–19] have emerged in building control applications.

In particular, model predictive control has gained increasing
popularity in utilizing passive or active thermal storage to save
energy [7–9]. With weather predictions and occupancy schedules,
free cooling at night was used in cooling applications and night
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setback was  adopted for heating applications [7,8]. Peak-load shif-
ting was implemented in MPC  to save electricity cost by taking
advantage of the time-of-day rate of electricity price [9]. MPC was
also applied to determine optimal temperature set-points at the
top level of a hierarchical control, for which simple PID or on-off
controllers were used for lower-level components such as fans,
heating/cooling coils and thermal storage tanks [7]. Alternatively,
low level components could be directly managed by a MPC  to
achieve a higher level of efficiency [11].

While on one hand energy saving is important, on the other
hand, occupant thermal comfort plays a key role in the control of
Heating, Ventilating and Air Conditioning (HVAC) systems for low-
energy buildings. A large number of the existing control algorithms
were designed such that the neutral temperature was achieved
based on the Fanger’s thermal comfort model. Alternatively, the so-
called effective temperature, which is a combination of the indoor
temperature and relative humidity, could be used as the index for
thermal comfort [10]. Though the existing HVAC control algorithms
seldom directly optimize a PMV  index (or use it as a constraint), a
numerical study demonstrated that using the PMV  in defining the
thermal comfort constraint in a MPC  could reduce energy consump-
tion and improve thermal comfort, compared to utilizing a comfort
zone from a psychrometric chart [10].
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Nomenclature

AMV  virtual occupants’ actual mean vote
Aw wall area, m2

 ̨ percentage of violation in chance constraint
Ci thermal capacitance of ith node in thermal network

model, J/K-s
CLO occupants’ clothing insulation
cpa specific heat of air, J/kg-K
cpw specific heat of water vapor, J/kg-K
d offset parameter
e  process noise
Gint internal gain, W
h convection coefficient, W/m2-K
hin outdoor specific enthalpy of moist air, J/kg
hout indoor specific enthalpy of moist air, J/kg
hwe evaporation heat of water at 0 ◦C, J/kg
Jt cost at time step t in MPC  formulation
k conduction coefficient, W/m-K
Kp proportional gain
KI integral gain
l wall thickness, m
M metabolic rate
ṁ air mass flow rate, kg/s
q slack variable for constraint
qvent flow ventilation heat flow, W
Rij thermal resistance between node i and j, K/W
RH relative humidity
Ta ambient air temperature, K
Ti temperature of ith node in thermal network model,

K
To outdoor air temperature, K
Tmr mean radiant temperature, K
TN adjacent room temperature, K
TS predicted thermal sensation in a generic model
�T sampling time, s
t time step
u control input, W
Va air velocity, m/s
v measurement noise
Win indoor humidity ratio
Wout outdoor humidity ratio
Ws saturation humidity ratio
w random noise in AMV
x thermal sensation state
y observed mean vote of thermal sensation

However, direct incorporation of the PMV  in a MPC design for
HVAC systems could pose practical implementation challenges. The
calculation of PMV  involves iteration, which could raise computa-
tion concerns, especially for MPC  which is known to be computation
intensive. Past work tried to approximate the PMV  with a neu-
ral network model [4,12,20] or with a linearized parameterization
model [21]. In addition, most buildings typically do not have sen-
sors to continually measure humidity, air velocity and mean radiant
temperature. Even though for laboratory facilities where the afore-
mentioned environmental sensing data are available, occupant
clothing insulation and activity levels, which could vary with
respect to time and vary among occupants, are seldom monitored
continually and individually. Assuming a uniform and constant
clothing level for occupants could cause errors in predicting occu-
pant thermal sensations [11].

In this study, the MPC  problem formulation used a data-
driven dynamic thermal sensation (DTS) model developed using

occupants’ feedback on thermal perceptions [22]. A distinctive fea-
ture of this DTS model lies in that the time-varying offset parameter
of the proposed Wiener-logistic model can be estimated through
an extended Kalman Filter (EKF) using real-time occupant votes to
capture the variability of thermal sensation due to environmen-
tal or occupant-associated changes. Rather than assuming that a
“PMV sensor” exists [10], this study assumed that occupants act
as a sensor for indoor thermal comfort and there exists a feedback
channel for occupants to provide their thermal sensation votes to
the controller. Field studies showed that there could be a discrep-
ancy between Fanger’s PMV  and occupants’ AMV  [23]. Furthermore,
occupants’ awareness of opportunities to control their environ-
ment could affect their perceptions of thermal comfort [24], and
occupants did often express their wishes to intervene automated
control systems [25]. Though under the current building environ-
ment, it might not be practical for an individual occupant to directly
control HVAC systems to achieve a personalized thermal environ-
ment, it is reasonable to assume that there is a feedback channel
for occupants to communicate their thermal sensation perceptions
to the controller.

Replacing Fanger’s PMV  by such a dynamic thermal sensa-
tion model in the MPC  formulation enables the proposed MPC
design for HVAC systems to adapt to uncertainties and varia-
tions associated with occupants’ thermal perceptions. In addition, a
chance-constrained MPC  was also developed using the DTS model,
which provides an opportunity for the controller to adjust the prob-
ability level of violation of thermal comfort to achieve a balance
between energy consumption and thermal comfort.

2. Models

This section presents a data-driven dynamic thermal sensation
model and a building model, which were used in the performance
evaluation of the proposed MPCs.

2.1. Experiments with human subjects

Chamber experiments with human subjects were approved by
the Institutional Review Board at the Pennsylvania State University
(IRB # 41077). The experiments were conducted in a climate cham-
ber with its dimension shown in Fig. 1. The chamber was divided
into two  identical rooms and each room has its own HVAC unit. A
HOBO U12 data logger was  positioned in the middle of each room
to measure air temperature and relative humidity. The mean radi-
ant temperature of each room was  measured by the BlackGlobe
Temperature Sensor for Heat Stress (BlackGlobe) mounted at the
same position as the HOBO U12 data logger. In the experiments, all
environmental parameters were controlled to be the same for both
rooms of the climate chamber, and both rooms were used at the
same time to provide enough space for all participants. Therefore,
the chamber can be viewed as a single virtual room and subject
votes from the two  rooms were not differentiated.

The experiments were conducted in February, with outdoor
temperature around 5 ◦C to 7 ◦C, and outdoor humidity level around
50%. There were two sessions and each session lasted 2.5 h. In the
first session, the room temperature was initially set at 21 ◦C for
50 min, then raised to 30 ◦C for another 50 min, and reduced back
to 21 ◦C again for the rest of the first session. The temperature of
the second session started at 30 ◦C for 50 min, then reduced to 23 ◦C
for another 50 min, and back to 30 ◦C for the rest of the session.
The available humidifier was  not used to mimic  the indoor envi-
ronmental conditions typical for buildings without humidification.
When the indoor air was heated to 21 ◦C to 30 ◦C, the resulting rel-
ative humidity of the chamber varied between 15% and 25%, with
an average of 21%. Since the experiments were designed to model
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