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a  b  s  t  r  a  c  t

The  least-squares  support  vector  machine  (LSSVM)  strategy  has  played  a crucial  role  in the  forecasting
of  building  energy  consumption  owing  to  its remarkable  nonlinear  mapping  capabilities  in prediction.  In
order  to  build  an  effective  LSSVM  method,  its  two free  parameters,  the regularization  parameter  and  the
kernel  parameter,  must  be  selected  carefully.  However,  LSSVM  using  a conventional  real-coded  genetic
algorithm  (RCGA)  or differential  evolution  algorithm  (DEA)  for determining  the  aforementioned  two
parameters  consumes  excessive  amounts  of  computation  time.  In  this  study,  a novel  LSSVM  for  effective
prediction  of daily  building  energy  consumption  is  designed  by utilizing  a hybrid  of  the  direct  search
optimization  (DSO)  algorithm  and RCGA,  called  the  DSORCGA.  The  proposed  DSORCGA  differs  from  the
conventional  RCGA  in  terms  of  the  reproduction  operator  and  the crossover  operator,  and  is used  to  opti-
mize  free  parameters  of LSSVM  for  faster  computation  speed  and  higher  predictive  accuracy.  Finally,  in a
MATLAB2010a  environment,  actual  building  energy  consumption  data  are  adopted  to  run  the proposed
DSORCGA-LSSVM  and  conventional  RCGA-LSSVM  and  DEA-LSSVM.  Further,  the  simulation  results  in the
target  period  are  compared  with  those  of actual  recorded  energy  consumption  data,  and  improvement
in  computation  time  is  revealed  via  numerical  simulation.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In recent years, energy conservation has received wide regional
and national attention, with prediction of the energy consumption
of a building becoming one of the most important individual and
societal energy conservation issues. However, predicting building
energy consumption is complicated because energy consumption
data present nonlinear patterns caused by such factors as climate,
settled population, and seasonal changes. Therefore, accurate and
rapid prediction of building energy consumption is challenging.

Several prediction strategies have been adopted, such as time-
series analysis [10], Fourier methods [11], and artificial neural
networks methods. Because of the strong nonlinear mapping
behavior of energy consumption data, some researchers have
begun using artificial intelligent techniques to focus on the pre-
diction of building energy consumption. In particular, the artificial
neural network (ANN) theory is widely used in nonlinear time
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series prediction, which has been applied generally to predict build-
ing energy consumption [1–9]. However, conventional ANN has
several drawbacks, such as the need for a large number of control-
ling parameters, difficulty in obtaining stable solutions, and thus
lack of generalizability. Furthermore, its training procedure is time
consuming and can be trapped in local minima [12].

Recently, support vector machines (SVM), developed by Vapnik
[13] in 1998, have received increasing attention. SVMs are based
on the structural risk minimization principle (SRM) and have been
shown to be superior to the traditional empirical risk minimization
principle (ERM) employed in conventional neural networks. SRM
seeks to minimize the upper bound of the generalization error,
which consists of the sum of training errors. In other words, SVM
overcomes the over-fitting problem and achieves improved gener-
alization performance by minimizing the structural risk, instead of
the empirical risk on which previous techniques were based [14].
Further, many studies apply SVM regression to building energy
consumption prediction [15,16] with the prediction accuracy out-
performing that of other prediction methods. The SVM procedure
of the learning problem requires quadratic programming (QP) with
a linear constraint. However, the size of a matrix relevant to the QP
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problem is directly proportional to the number of training points
associated with the computation speed.

In order to reduce the complexity of optimization processes,
Suykens and Vandewalle proposed a reformulated version of SVM,
called least-squares SVM (LSSVM) [17]. LSSVM uses the square
errors instead of the nonnegative errors in the optimization prob-
lem and equality constraints instead of inequality constraints, in
contrast to conventional SVM. In other words, LSSVM solves a set
of linear equations instead of the QP problems solved in standard
SVM, thereby significantly reducing the computational time of the
learning process [18]. LSSVM has been applied to various fields such
as pattern recognition [19,20], system identification [21,22], and
time series prediction [23].

For LSSVM, two parameters, the regularization constant and
the kernel function parameter, are called free parameters and
they play a crucial role in the performance of the SVM. However,
inappropriate free parameters lead to over-fitting or under-fitting,
and different parameter settings may  also cause significant differ-
ences in the performance [24]. Thus, selecting the optimal free
parameters is an important procedure in LSSVM. However, no
general guidelines are available for selecting these parameters
[13,25]. Moreover, it is time-consuming and difficult to select
suitable parameters to obtain good performance by trial and
error [26]. In order to solve these problems, genetic algorithms
(GA), differential evolution algorithms (DEA), immune algorithms
(IA), and other evolutionary strategies have been employed to
find free parameters of LSSVM [26–29]. In particular, substantial
research has been conducted on the application of GA techniques
to improve the accuracy of building energy consumption prediction
[26,30–32]. Pai and Hong showed that SVM with GAs are superior
to other competitive prediction strategies (regression and ANNs)
[33].

GAs were first proposed by Holland [34], with further study
by Goldberg [35]. A general GA starts with a population of indi-
viduals, which evolves into advanced populations (according to a
fitness function) as a result of naturally inspired operators, such as
reproduction, crossover, mutation, and inversion [36].

Recently, real-coded GA (RCGA) methods have been introduced
for a wide range of applications [26–28,30–33]. An RCGA uses a real
value as a parameter of the individuals in the population without
using the coding and encoding procedure before calculating the fit-
ness value [37]. Thus, an RCGA is more straightforward, faster, and
more efficient than conventional binary-coded GA. Recently, Kim
et al. proposed a hybrid concept called DSORCGA that consists of the
direct search optimization (DSO) method and RCGA. The DSORCGA
hybrid differs from conventional RCGA in terms of the reproduction
and crossover operators. It has been shown that the robustness and
convergence speed of DSORCGA is superior to that of conventional
RCGA [38].

In this study, the DSORCGA method proposed by Kim et al. [38]
is employed in the LSSVM, namely DSORCGA-LSSVM, to determine
the free parameters of LSSVM in a more effective manner by opti-
mizing free parameters simultaneously from the training data. To
verify the efficiency and performance of the proposed algorithm, a
fair comparison is made with conventional RCGA and DEA, which
were developed for the same problem and condition. Eventually,
LSSVM with DSORCGA optimization was applied to building energy
consumption prediction. The superior performance of the proposed
algorithm, as compared with conventional RCGA and DEA methods,
is confirmed by simulation.

The remainder of this paper is organized as follows. Section
2 introduces LSSVM and then establishes the process of opti-
mized free parameters based on LSSVM. Section 3 discusses the
procedures of conventional RCGA and the proposed DSORCGA.
The simulation results of applying the proposed DSORCGA-
LSSVM model to building energy consumption prediction are

presented in Section 4. Finally, conclusions are drawn in Section
5.

2. Least-squares support vector machines and the
optimization process of free parameters

LSSVM is a technique for regression. When LSSVM is used to
estimate building energy consumption, input and output variables
must be chosen first. Hence, this study takes historical data of build-
ing energy consumption for the last four weekdays as the input
parameters of the building energy consumption prediction model.
The daily quarter-hourly weekday building energy consumption is
chosen as the model’s output.

Consider a training data set {(x1, y1), . . .,  (xN, yN)} with input data
xi ∈ RN and output data yi ∈ RN, where N is the size of sample data.
In order to obtain the function dependence relation, SVM maps the
input space into a high-dimension feature space and constructs a
linear regression as follows:

y = f (x) = wT �(x) + b (1)

with �(·) : Rn → Rn� , a nonlinear function that maps the input space
into a so-called higher dimensional feature space; w and b are the
regression parameters to be solved.

The LSSVM regression estimation involves primal and dual prob-
lems. Given the training data set {(x1, y1), . . .,  (xN, yN)}, the aim is
to estimate the model Eq. (1), where f is parameterized as in Eq. (4).
We can formulate the following optimization scheme to infer our
parameters:

min
w,b,e

LP(w, e) = 1
2

||w||2 + �

2

N∑
i=1

ei

s.t. yi = w · �(xi) + b + ei, i = 1, 2, . . .,  N

(2)

where error variables e = (e1, e2, . . .,  eN)T, ei ∈ R, and � > 0 is a penalty
parameter also called a regularization parameter, which is included
to control the bias-variance trade-off. The above statement is in fact
the same formulation as is used in the case of ridge regression in the
feature space defined by �(·). Note that in some cases, w becomes
infinite-dimensional, and the above problem formulation cannot
be used to solve the problem. Therefore, we perform the computa-
tions in another problem, named the dual problem of Lagrangian
multipliers, after applying Mercer’s condition. The corresponding
Lagrangian of Eq. (2) is

LD(w,  b, ei, ˛)= 1
2

wT w + �

2

N∑
i=1

ei−
N∑

i=1

˛i(w
T �(xi) + b + ei−yi) (3)

Here,  ̨ = (˛1, ˛2, . . .,  ˛N)T, ˛i ∈ R are Lagrangian multipliers.
According to the Karush–Kuhn–Tucker (KKT) conditions, the first-
order conditions for optimality are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂LD

∂w
= 0 → w =

N∑
i=1

˛i�(xi)

∂LD

∂b
= 0 → 0 =

N∑
i=1

˛i

∂LD

∂ei

= 0 → ˛i = �ei, i = 1, 2, . . .,  N

∂LD

∂˛i

= 0 → yi = wT �(xi) + b + ei, i = 1, 2, . . .,  N

(4)

From Eq. (4), combining the first and the last condition yields

yi =
N∑

i=1

˛i�(xi)
T �(xi) + b + ei (5)
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