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a  b  s  t  r  a  c  t

Being  increasingly  insulated,  new  buildings  are  more  and more  sensitive  to variations  of  solar  and  inter-
nal  gains.  Due  to  an  important  use  of electrical  heating  systems,  especially  in  housing,  France  is  facing  a
growing  problem  of  peak  load on  its  electricity  grid.  Controlling  the  heating  system  often  constitutes  an
efficient  solution  to  shift  heating  loads  while  maintaining  indoor  comfort.  The  proposed  energy  manage-
ment  is  a predictive  set  of optimal  commands  issued  from  a dynamic  programming  optimization  knowing
in  advance  the  weather,  occupancy  and internal  gains  for  the  next  7 days.  This  method  is tested  on  a  low
energy  house  situated  in  France  with  an annual  heating  demand  of  14  kWh/m2. In this  paper,  load  shifting
according  to utility  rate  incentives  and carbon  emissions  are  studied.  The  importance  of  building  models
as  well  as  envelope  insulation  and  thermal  mass  on  energy  management  results  is shown.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The main objectives for control systems in buildings are to save
energy and increase comfort. During a summer period, control
systems are used to reduce the energy consumption of air con-
ditioning or to maintain comfort using passive cooling. Previous
studies concerned the control of shutters [1–3], ventilation [4,5],
and active cooling [6,7]. Another objective is addressed here: to
reduce environmental impacts and costs thanks to an improved
integration in a larger scale electrical system, according to a smart
grid approach. During a cold winter period, control systems can be
used to decrease the energy consumption of the heating system [8]
or to reduce peak demand [9] for example. Peak electrical demand
is a serious problem for the stability of the electrical network [10].
Load shifting is an efficient method to face this problem, it allows
moving electrical loads from peak to off-peak times. One simple
way to shift the load is to store energy during off-peak time in order
to decrease energy demand during peak time. There are several
methods to store energy. The first is to use the thermal mass of the
building envelope. The higher the thermal mass, the more energy
can be stored if the insulation is adequate, which corresponds to
a passive storage [11,12]. It is also possible to use Phase Change
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Material to store more energy in the thermal mass of the build-
ing [13]. An active storage like a battery is a third way to store
energy [14]. The storage and discharge of heat at the right time
benefits from a predictive controller able to anticipate the varia-
tion of ambient temperature, solar irradiance and internal loads.
Many advanced control systems are reviewed in Ref. [15]. Some of
them are Model Predictive Controllers (MPC). An optimization is
done at each time step (online), the results is an optimal sequence
of controls for several time steps on a finite horizon. Only the
first control is applied, a new optimization is done for the next
time step. This is a relevant method when the system response
is greater than the duration of a full optimization because a new
optimization is possible at each time step. Linear or quadratic pro-
gramming [16,17], Shell Multivariable optimizing Control [18] and
Generalized Predictive Control [19] are some examples of MPC. For
predictive controllers, a thermal model of the building is required
[20–22]. Due to the time step of this model, a combinatorial opti-
mization is well suited. Among these methods, the A* [23], and the
Branch and Bound algorithms [24], need an assumption of the lower
or upper bound which is not available in the case of heating control
problems. In this case, using these optimization algorithms would
be a lot more time consuming than using dynamic programming.
Dynamic programming is also chosen because of its exact optimiza-
tion character. It has served in a building context mainly for winter
operation of the heating system [21,25] but not for load shifting.
In this publication, a dynamic programming optimization is used
to set up a predictive controller knowing in advance ambient tem-
perature, solar gains and internal loads. The objective is to shift the
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heating load in the building, and dynamic programming is tested
to control the heating system of a house during a cold week. The
load shifting is done according to utility rate incentives in a first
step then according to carbon emissions. The controller depending
on the building model, the influence of number of thermal zones
is studied. The optimal set of commands issued from optimiza-
tions with different building envelope insulation levels and thermal
masses are then compared.

2. Models

In this paper, a predictive controller using dynamic program-
ming is studied to shift heating loads from peak periods to off-peak
time. The prediction is based upon thermal simulation. The cor-
responding model is presented hereunder, along with the cost
functions.

2.1. Thermal model of the building

The building is modeled as zones of homogenous temperature.
In each zone, each wall is divided in meshes small enough to also
have a homogeneous temperature. There is one more mesh for the
air and furniture of the zone. A thermal balance is done on each
mesh within the building [26]:

CmeshT ′
mesh = Gains − Losses (1)

Cmesh being the thermal capacity of the mesh, Tmesh its temperature,
Gains and Losses including heat transfer by conduction, radiation
and convection but also possible internal heating and cooling from
equipment and/or appliances, occupants and solar gains.

For each zone, repeating Eq. (1) for each mesh and adding an
output equation leads to the following continuous linear time-
invariant system, non linear terms being included in the driving
forces (i.e. ventilation losses) [26]:

CT ′(t) = AT(t) + EU(t) (2)

Y(t) = JT(t) + GU(t)

where T is the mesh temperature vector; U is the driving forces
vector (climate parameters, heating, etc.); Y is an outputs vector
(indoor temperatures accounting for air and wall surfaces); C is the
diagonal thermal capacity matrix and A, E, J, G matrices relating
temperatures and driving forces vectors.

In order to perform simulation, it is important to know the
occupancy of the building, which defines the emission of heat by
inhabitants and appliances, the thermostat set point influencing the
heating/cooling equipment, and possible actions regarding ventila-
tion and shutters. Another important aspect is the weather model,
influencing heat losses and solar gains. All the data of the occupancy
and weather models are contained in the driving forces vector U.

A high order linear model is thus constituted. But its state
dimension is too large to allow a fast convergence of an optimiza-
tion algorithm. A modal reduction is then applied in order to lower
the state dimension and to make the algorithm faster [27].

2.2. Optimization algorithm

The dynamic programming algorithm is a sequential optimiza-
tion method which provides an optimal set of commands over a
period. A control vector u is defined with Nc dimensions:

u(t) = ut ∈ Ut, Ut ⊂ RNc (3)

where Ut is the set of possible controls. A state variable describing
the system evolution is used and discretized temporally:

x(t) = xt ∈ Xt, Xt ⊂ RNe (4)

where Xt is the set of possible states, Ne is the dimension of Xt. The
state equation at each time step t relates the state variable at the
following time step to the variables at t using a function f:

x(t) = xt, x(t + 1) = f (x(t), u(t), t) (5)

A value function vt is now defined which is the cost to progress
from x(t) to x(t + 1):

vt(xt, xt+1), xt+1 ∈ Tt(xt) (6)

Tt being the set of possible state variables at time t. The cost
function is then the sum of all value functions at each time step:

Vt
0 =

t−1∑
j=0

Vj(xj, xj+1) (7)

The optimization seeks to maximize the following objective
function over N time steps corresponding to the period from 0 to t:

J = max[VN
0 ] (8)

This equation gives us a set of controls to go from x0 to
xt. Bellman’s principle of optimality is applied to accelerate this
optimization by breaking this decision problem into smaller sub-
problems [28]:

“An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must con-
stitute an optimal policy with regard to the state resulting from
the first decision.”

Eq. (8) becomes then:

J = Max[V0(x0, x1) + Max[VN
1 ]] (9)

So dynamic programming operates as shown in the following
figure (Fig. 1):

To summarize, a set of commands UN = (u0, u1, . . .,  uN) max-
imizing (9) for a system described by (5) with constraints on
state variables (4) and on controls (3) is the result of the opti-
mization. For the application of dynamic programming in a
building context, the chosen state variable is described in the
section 2.3.

2.3. Cost functions

Two value functions (see Eq. (6)) are used in this paper. The
first value function emphasizes the utility rate incentives while the
second emphasizes the carbon emissions due to the electric con-
sumption of the heating system. The first one is used when the load
shifting is done according to utility rate incentives. A higher price

Fig. 1. Dynamic programming description.
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