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a  b  s  t  r  a  c  t

Strategic  decisions  regarding  energy  systems  deployment  at the  building  level  are  becoming  a  great  chal-
lenge  in  the  global  market.  On  the  one  hand,  competition  policies  are  allowing  the  arriving  of  new  actors
to  the  market,  resulting  in sophisticated  pricing  options.  On  the  other  hand,  efficiency  and  sustainability
policies  and  regulations  aim  at  encouraging  building  managers  and operators  to  adopt  an  active  role
in the  energy  market.  In  this  paper, an  optimization  model  which  deals  with such  strategic  decisions
is  presented.  The  model  integrates  features  such  as  scaled  operational  performance  in the  short  term,
different  technologies  and  market  options,  and  different  energy  types,  as well  as  technologies’  aging  and
renovation.  This  integration  results  on a holistic  model,  which  constitutes  the  main  contribution  of the
paper,  suitable  to be  implemented  in  decision  support  systems  (DSS).

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Overview

In this paper, an optimization model for strategic decisions con-
cerning energy planning in buildings is presented and assessed.
The model is being developed within the EnRiMa research project
[1]. The result of the project will be a decision support system
(DSS) for building managers and operators, which will help mak-
ing decisions for energy efficient buildings. This DSS will deal with
both strategic and operational decisions. Thus, in addition to the
strategic model presented in this paper, an operational model has
been also developed [2]. The strategic model has been designed
in order to make strategic decisions concerning which technolo-
gies to install and/or decommission in the long term, that is,
the energy technologies portfolio planning. Besides technologies,
this planning includes market options selection. In an attempt to
tackle short- and long-term decisions simultaneously, the strategic
model includes a simplified version of operational energy-balance
constraints. At that stage, we can find in the literature strategic opti-
mization models whose energy-balance constraints (which assures
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covering the building energy demand) are aggregated in the long
term [3]. This approach does not allow the decision maker to take
into account the performance of the installed technologies in the
short term, leading to optimal solutions that may  result in unrealis-
tic implementations. In order to avoid this drawback, the strategic
module includes upper-level operational variables and constraints
that manage the energy flows from inputs to outputs through
technologies. It is important to remark the difficulty of this inte-
gration since several parameters interfere and could easily lead to
questionable outcomes. Nevertheless, through the scaling of the
operational parameters to the overall strategic scope using repre-
sentative profiles this effect is diluted.

The optimization model presented in this work gathers the
interrelations between the building’s energy subsystems outlined
above, and the time-scaling between different time spans. In par-
ticular, the integration of different energy types, technologies aging
modeling, and accounting for operational performance, are novel
contributions to the state of the art. Thus, ignoring the aging
and therefore the decay of equipment can have consequences for
buildings mid-term and long-term management. Likewise, this
model allows the inclusion of operational parameters in addition
to the strategic modeling, which is something new regarding exist-
ing proposals. Moreover, the model has been designed so that it
may  be straightforwardly used within a stochastic programming
approach as discussed in Section 5. Finally, a numerical exam-
ple using data from an EnRiMa project test site illustrates the
model.
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1.2. Background

In the last decades, several regulatory and market changes have
altered the way energy is being used. The energy market liberal-
ization process, initially mainly focused on the electricity market
[4], has widened leeway to building managers and operators. They
can adopt an active role by making decisions about how to ful-
fill the energy needs of buildings. Thus, they can choose between
different energy providers at different levels and periods under
the customer-retailer-producer market structure [5]. Several initia-
tives fostering “energy-balanced” buildings have arisen worldwide.
Using different nomenclatures (e.g., zero-net energy, net-balance),
the aim is to locally produce as much energy as it is consumed
[6]. Other challenges are likely to appear regarding building energy
management such as demand response or load shifting. Further-
more, new technologies for energy generation, renewable energy,
or self-consumption are emerging. In this regard, a DSS is desirable
to help decision makers choosing the optimal equipment to deploy
in the building.

We  can find in the literature research about energy systems
planning from different approaches. Some of them deal with spe-
cific technologies, for example [7,8], focus on distributed energy
resources (DER) technologies; [9] focus on wind technologies.
Other optimization models are designed from the production point
of view [10,11], or from a regional perspective [12]. Only recent
papers tackle systems planning at the building level [13].

2. Modeling

In this section, the optimization model is explained step by step.
Variables, represented by small Latin letters, and parameters, rep-
resented by capital Latin letters, are defined as they appear in the
equations. Superscripts are for time-related sets and subscripts
are for the rest of the sets. For the sake of clarity, equations and
sums domains are expressed in terms of sets, even though in the
implementation more precise boundaries through the definition of
subsets and multidimensional sets is needed to avoid spurious vari-
ables creation. A complete nomenclature can be found in Appendix
A.

2.1. Time modeling

As mentioned above, operational decisions and constraints are
embedded in order to take into account the energy systems perfor-
mance and decisions in the short-term, e.g., hours. To achieve this
goal, instead of including all the possible hours for each year, i.e.,
8760, which will likely result in unacceptable computational time,
a given number of representative “in-between” mid-term periods
are considered [14]. In this way, we can consider concurrently dif-
ferent parameter values for different performance scenarios, e.g.,
day/night hours, hot/cold seasons, and so on. The proposed model
tackles this multiple time resolution including three time sets: P
for long-term periods, M for mid-term representative periods, and
T for short-term periods. Decision variables and parameters includ-
ing the counterpart indices p, m,  and t gather this logic. Note that
operational decisions include indices m and t in addition to the
p index, whilst strategic decisions only refer to yearly decisions,
hence they do not include m neither t indices. In order to scale
between different time resolution terms, the parameters DT and
DMm contain the time duration for the short-term period (e.g., one
hour) and mid-term representative periods (e.g., days). Mid-term
representative periods can be seen as profiles of days with a similar
building behavior, e.g., ‘winter weekdays’, ‘summer weekend days’,
and so on. The set A  = {0, . . .,  |P| − 1} is used to model technologies’
aging.

It is important to remark that the decisions to be actually made
after solving the model are only the strategic decisions for the first
long-term period (p = 1). Nonetheless, a long-term decision horizon
is needed in the model in order to consider the systems perfor-
mance throughout the time, and to allow a long-term objective
optimization, e.g., minimize global cost for the next 25 years. Even
though the model allows different time duration for each index,
for the sake of clarity in the following we will refer to long-term
periods as years, short-term periods as hours, and mid-term periods
as profiles.

2.2. Technologies modeling

Both installation and decommissioning of energy systems are
considered in the model. Technologies are modeled through the
I set and they can be energy-generation technologies such as
combined heat and power (CHP) or photovoltaic (PV), storage
technologies such as batteries, or passive technologies such as insu-
lation. Thus, actual decisions on how many units of a technology
to install or to decommission at the beginning of each year are
represented by the variables xip

i
and xdp,a

i
respectively. Note that

decommissioning decisions are also related to the age of the tech-
nologies, as for a given year we may  have technologies installed at
different previous years. The variable xp,a

i
is used to dynamically

calculate the available units of each technology i ∈ I and their age
throughout the decision horizon p ∈ P:

xp,0
i

= xip
i

∀ i, p, (1)

xp,a
i

= xp−1,a−1
i

− xdp,a
i

∀ i; a > 0, p > 1, (2)

x1,a
i

= XZa
i − xd1,a

i
∀ i; a > 0. (3)

Eq. (1) states that the available units of technologies whose age
is zero (‘new technologies’) are equal to the ones that are installed at
the beginning of such period. Eq. (2) computes the available units of
‘old technologies’, subtracting the decommissioned ones to the one
year younger existing the previous year. Technologies with a given
age a already installed in the building are accounted for by the XZa

i
parameter, and Eq. (3) computes the ‘old technologies’ available at
the beginning of the first year. Once we have the units available
per age during each year, we can compute the available real capac-
ity (xcp

i
) taking into account the aging of technologies and their

capacity:

xcp
i

= Gi ·
∑

a

AGa
i · xp,a

i
∀  i, p. (4)

The AGa
i parameter is an aging factor reflecting the decay of the

technology capacity over time. In general, it should be 1 for a = 0 and
lower down to its residual capacity, or zero at the end of its lifetime.
The Gi parameter is the nominal capacity of the technology, i.e., kW
per unit installed. Note that for continuously sized technologies,
which we  can decide directly the capacity to be installed instead of
the number of units, Gi = 1. For simplicity of exposition, we consider
xip

i
, xdp,a

i
, and xp,a

i
integer variables. Nevertheless, it is straight-

forward to define subsets for discretely- and continuously-sized
technologies in order to reduce the number of integer variables so
as to improve the computational solution time.

Usually we  must consider a physical limit for the number of
devices we can install as a function of the building characteristics,
e.g., the total surface suitable to allocate PV panels. The parameter
LPp

i
states this limit which is controlled by the following equation:

∑

a

xp,a
i

≤ LPp
i

∀ i, p. (5)
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