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a b s t r a c t

Majority of the research conducted in the field of optimal scheduling of smart appliances does not consider
the inherent uncertainties in this problem. Besides, the ones that count for the uncertainty usually assume
full knowledge about the exact form of the probability distribution of the uncertain parameters. This
assumption is hardly fulfilled in reality. In this paper, we seek to find solutions that are robust with
respect to the probability distribution of the uncertain parameters while making no explicit assumptions
about their exact forms. Accordingly, we define a chance-constrained model to find the optimal schedule
and use robust optimization to characterize its solution and the associated uncertain parameters.

We also consider the effect of heterogeneous populations on the optimal solution while simultaneously
determining the most appropriate classification for accurate predictions. In the process, we investigate
the effect of delays in information sharing on computed optimal conditions and we develop a new clas-
sification for in-house appliances. We explore features of our model using price data from the “Olympic
Peninsula” project. We anticipate that by pursuing optimal options, a typical customer can save up to
33% in her electricity bills while sacrificing 19% of her comfort level. Moreover, in a heterogeneous pop-
ulation, while the results suggest no direct dependency between savings and income level, a meaningful
correlation is detected between savings and employment status.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Smart-Grid emerged as an opportune response for chal-
lenges to reliable decision-making in increasingly complex power
networks. The confluence of information technology and advanced
measurements (synchrophasors, smart meters, etc.) enables the
conceptualization of power network on a granularity where both
generation stations and individual appliances are simultaneously
visible. These resources to “think fast and big” provide Smart grid
with the capacity to engage load as a resource to manage inter-
mittency in power supply and demand, and to find the most
optimal solutions in real time for operation efficiency and resilience
to disturbances. This has heralded Smart Grid as the enabler for
energy-related challenges such as energy sustainability, fossil fuel
emissions into the environment, demand growth, aging asset bases
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and increased complexity in the power grid [1]. Various approaches
have been proposed among various stakeholders of the power net-
work system to envision and categorize features of smart grids.
Accordingly, smart grids are characterized as power grids with five
major features: reliability, renewable resources, demand response,
electric storage and electric transportation [1].

Currently, 20% of power generation capacity is latently avail-
able just to meet peak demand, incurring high operational costs
on the power network [2]. As peak demand occurs about 5% of
the time significant savings can be achieved by “peak curtailment”
or “peak leveling”, i.e., using demand-side management (DSM) or
demand response techniques to manage and shape consumption
profiles at the consumer side in order to achieve smoother usage
trends [3]. One type of demand response uses automated two-way
communication between power utilities and consumers so that
consumers can respond and coordinate their behaviors according
to conditions imposed by the power grid. Electricity prices serve as
an efficient and practical incentive for customers to change their
consumption behaviors. For instance, with proper incentives, cus-
tomers could likely shift their deferrable energy usage from high
price peak periods to lower price off-peak periods.
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A reasonable assumption that could underlie predictive models
of demand response is that consumers will optimize their respec-
tive consumptions in response to dynamic electricity prices. To do
so, they each need to solve an optimization problem to find a sched-
ule for appliances that is optimal to her preferences. In practice,
these algorithms can be solved by energy consumption scheduling
(ECS) units which are embedded in the smart meter of every house.
Although the real consumer behavior will deviate from the opti-
mal scheme, this approach provides an appropriate benchmark for
decision making purposes, both for individual customers at house-
hold level and for power system operators in managing generation
and power delivery systems (e.g., projecting electricity prices and
amount of demand response based on the optimal scheme with
consideration of deviations, and preparing resources accordingly).
Finding the optimal schedule of operation for appliances in a house-
hold subject to real-time and uncertain prices remains a challenge
in the smart grid context, and constitutes the main contribution of
the present paper.

A challenge in addressing this problem consists of accounting for
the various uncertainties in characterizing the underlying model.
Clearly, properly incorporating these uncertainties into the model-
based predictions can significantly increase the effectiveness of
ensuing decisions. The major source of uncertainty in the present
context is the price of electricity. The ECS scheduler requires some
estimate about the future electricity price, say for the next 24 h, to
be able to find the optimal decision at the current point in time.

In the present study, we propose a model to find the optimal
schedule of operation for smart appliances in a household on one
typical day, taking into account uncertainty in future electricity
prices. We define a chance-constrained optimization problem and
use robust optimization techniques to tackle it. Robust optimiza-
tion is a rather new technique in modeling uncertainty, which is
most suitable for situations in which no exact probability distribu-
tion of the uncertain parameter is available [4]. Instead, we require
the solution to be feasible for all the instances of the uncertain
parameter which lie in an uncertainty set. This yields an optimal
solution that is robust with respect to the probability distribution
of future electricity prices. As part of our model, we propose a new
categorization scheme for appliances in a given house. This detailed
appliance model aims to more realistically capture the properties
of the devices in a house.

Given the above model, we will discuss finding the most appro-
priate uncertainty set associated with our specific problem. We
then solve this task for a single customer as the first step. Investigat-
ing the model performance in a sample heterogeneous population
is another challenging and relevant topic that we address in this
study. From the utility company’s perspective it is crucial to have an
estimate of the aggregate consumption behavior in a region assum-
ing that all customers are behaving optimally. This can be a useful
benchmark for decision making purposes. To conduct this analysis,
we initially perform sensitivity analyses to find the most crucial
parameters of the model that can trigger different behaviors among
different people. Based on a sensitivity analysis, we categorize peo-
ple according to their socio-economic characteristics. We discover
much more significant dependence of consumption patterns on
employment status rather than on income level of customers.

Generally speaking, various time scales can be used for mea-
surement, aggregation and decision-making phases of a problem.
In this work, we seek to know whether the aggregation time scale
can change the outcomes of the optimal scheduling problem or not.
We will use multiple time scales to answer this question. Answer-
ing this problem, helps the utility companies to find appropriate
time intervals to communicate with the customers in terms of
sending price signals. It will also help customers to understand
the required frequency for updating their behaviors. We use real
electricity price data from Pacific Northwest National Laboratory

(PNNL) pilot project called “Olympic Peninsula” to conduct our
simulations [5].

The remainder of the paper is organized as follows: Section 2
reviews the literature on intelligent scheduling in smart homes.
Robust optimization method and robust counterpart approxima-
tion for chance-constraints are briefly discussed in Section 3. Our
proposed model to find the optimal load schedule is presented in
Section 4 followed by the subsequent simulation results and dis-
cussions in Section 5. Then, the problem is extended to the case of a
heterogeneous population in Section 6. Section 7 discusses the sig-
nificance of aggregation time scale in the model outcomes. Finally,
Section 8 concludes the paper.

2. Related work

Smart scheduling is traditionally formulated as an optimization
problem in which the consumers wish to minimize their electricity
costs [6–10] or maximize a weighted sum of their utility function
(i.e., level of satisfaction) minus the cost [11–14]. This objective
is combined with some constraints on the operation condition of
appliances, reflecting customer preferences [6,11]. In some cases,
the authors introduce a so-called “inconvenience term” or “waiting
cost” into their objective functions to account for the discomfort
caused by the delay in satisfying customers’ electricity needs [15].

We categorize technical contributions to this problem into two
general classes. The first class consists of those which formulate
a deterministic scheduling problem [3,7–12,16–18], whereas the
papers falling into the second category integrate some kind of
uncertainty into their models [14,19–22].

In [7,9], the energy consumption of appliances is optimally
scheduled based on a time varying curve of electricity price
and available power. A three phase strategy including prediction,
scheduling and real-time control of appliances within a building
is studied by Kang et al. in [8]. Mohsenian-Rad et al. [3] find the
optimal schedule for one customer and then extend it for a group
of customers borrowing concepts from game theory. In [17], the
authors combine the problem of finding the optimal consumption
schedule with future price prediction in a real-time pricing envi-
ronment. They use a weighted average price prediction filter to
estimate the unknown future prices. A similar work by Samadi
et al. [12], simultaneously solves the scheduling problem on the
consumer side with the pricing problem on the power supplier
side. Caprino et al. [16] propose an automatic coordination system
to schedule major household appliances in order to achieve peak
reduction. The authors in Ha et al. [18], use a mixed integer linear
program to concurrently control the electrical energy consumption
and production in a single dwelling.

In an attempt to model the appliances in more detail for energy
management purposes, the authors in [10] incorporate constraints
to count for the uninterruptible and sequential modes of operation
in a mixed-integer linear programming framework. On the same
thread to detail the appliance model, Li et al. [11] introduce four
general types of appliances, each with a particular utility function.

All the previously mentioned papers include no source of
uncertainty into their models. However, it is undeniable that uncer-
tainty is dramatically intertwined with this particular problem
and ignoring it is likely to yield sub-optimal results. The subse-
quent parts examine the literature accounting for uncertainty in
power scheduling problems. One of the earliest works to consider
price uncertainty was put forward by Conejo et al. in [19]. The
authors develop an ARIMA model to predict confidence intervals for
future energy prices; based on that they formulate a robust sched-
ule optimization problem. Kishore et al. [15] propose a dynamic
programming algorithm in which a transition matrix models the
evolution of appliance modes over time.
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