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a  b  s  t  r  a  c  t

In  this  work  an  improved  method  for  the  simplified  modelling  of the  thermal  response  of  building  ele-
ments  has  been  developed  based  on a  5-parameter  second-order  lumped  parameter  model.  Previous
methods  generate  the  parameters  of these  models  either  analytically  or by using  single  objective  func-
tion  optimisation  with respect  to  a  reference  model.  The  analytical  methods  can  be complex  and  inflexible
and  the  single  objective  function  method  lacks  generality.  In this work,  a multiple  objective  function  opti-
misation  method  is  used  with  a reference  model.  Error  functions  are  defined  at  both  internal  and  external
surfaces  of the construction  element  whose  model  is to  be fitted  and  the resistance  and  capacitance  dis-
tributions are  adjusted  until the  error  functions  reach  a minimum.  Parametric  results  for  a  wide  range
(45)  of  construction  element  types  have  been  presented.  Tests  have  been  carried  out  using  a  range  of both
random  and  periodic  excitations  in  weather  and  internal  heat  flux  variables  resulting  in  a  comparison
between  the  simplified  model  and  the  reference  model.  Results  show  that  the  simplified  model  provides
an excellent  approximation  to the  reference  model  whilst  also  providing  a  reduction  in computational
cost  of  at  least  30%.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In 2002 Gouda et al. [1] developed a simplified method for the
dynamic thermal modelling of single-layer and multi-layer con-
struction elements. They used an optimisation algorithm to find
the five required parameters of the simplified model by matching
its dynamic response to a high-order reference model. The work
was limited in three respects:

• A unit step response was used as the excitation variable for
the simplified model parameter fitting whereas excitations in
practice vary continuously.

• The results were based on excitations applied individually to both
heat flux and temperature at one surface only using a single objec-
tive function search algorithm whereas in practice, both internal
and external surfaces would be subject to simultaneous excita-
tions of more than one variable.

• Only two sets of results were published making it difficult for
other users to make use of the simplified model.
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In this work an improved method is proposed for the extraction
of the simplified model parameters based on a multiple objective
function search algorithm (i.e. objective functions simultaneously
applied to both inside and outside surfaces) and the use of a ref-
erence model consisting of a rigorous finite-difference method.
Extensive sets of results are generated for a range of common con-
struction elements and a sample of these elements are tested in the
context of a simple room enclosure model which alternately uses
the simplified model and the more rigorous reference model for its
construction elements.

2. Review

The application of lumped parameter modelling methods to
building dynamic thermal response is motivated by the desire to
find simpler and, hence, computationally less ‘expensive’ meth-
ods for the analysis building thermal energy response. Approaches
broadly fall into two  categories:

• Lumped parameter construction element models from which
whole room models may  be constructed [1–3]

• Lumped parameter whole room models [4–8]
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List of symbols

A area (m2)
C thermal capacity per unit area (J m−2 K−1)
c specific heat capacity (J kg−1 K−1)
F Fourier number
f thermal resistance rationing factor
g thermal capacity rationing factor
h surface convection coefficient (W m−2 K−1)
k thermal conductivity (W m−1 K−1)
L number of layers of material
m mass flow rate (kg s−1)
Q heat transfer (W)
R thermal resistance (m2 K W−1)
T temperature (◦C, K)
T′ sol-air temperature (external), rad-air temperature

(internal) (◦C)
t time (s)
W weighting factor
x distance (m)

Greek
 ̨ thermal diffusivity (m2 s−1 = k/�·c)

�t time step increment (s)
�x  spatial increment (m)
ε root-mean-square error
� density (kg m−3)∑

C total element thermal capacity per unit area
(J m−2 K−1)∑

R total element thermal resistance (m2 K W−1)

Subscripts and superscripts
a air, material ref. ‘a’
b material ref. ‘b’
c convection
i layer node index
i internal (space)
m middle position
n time row index
o outside, exterior
r radiant, solar radiation
s surface
s surface index number
upper upper bound limit

Though the differences between the two approaches are rather
subtle (since models of individual construction elements are almost
always used as a basis for grouping or aggregating into whole room
models), the treatment of individual elements usually provide
greater detail in modelling information such as individual surface
temperatures which can be important when dealing with radiant
sources, etc.

Lorenz and Masy [2] were among the first to propose a simplified
lumped parameter approach to building response modelling using
a first-order model consisting of two resistances and one capacitor.
Gouda et al. [1] demonstrated improved accuracy using a second-
order model in which each construction element is described using
three resistances and two capacitances. These approaches to mod-
elling were often referred to as ‘analogue circuit’ models due to
their connotation with electric circuits (i.e. see Fig. 1 in Section 4).
Fraisse et al. [3] also compared first- and second-order element
models (the latter referred to as a ‘3r2c’ model) and went further to
propose a fourth-order ‘3r4c’ model with aggregated resistances.
Like Lorenz and Masy [2], they propose an analytical method for

deriving the parameters of the model (essentially, the distribu-
tion of resistance and capacitance values throughout the ‘circuit’)
whereas Gouda et al. [1] used an optimisation method to determine
the parameters with reference to a rigorous reference model.

Crabb et al. [4], Tindale [5] and others [6–8] have applied the
lumped parameter approach to the formulation of low-order whole
room models by casting the capacitance parameter over the higher
capacity elements of a room (external walls, solid floors, etc.) and
using algebraic heat balances for the lower capacity room elements
(demountable partitions, etc.). Tindale [5] attempted this using a
second-order room model but found that it provided unacceptable
results for rooms with very high thermal capacity (i.e. ‘traditional’
construction). He corrected this by introducing a third ‘equivalent’
room capacitance which required an inconvenient method for its
parameterisation.

Though low-order whole room models offer very low compu-
tational demands and simplicity, there remain questions over the
accuracy of these models particularly over long time horizons and
they tend to provide less modelling information (i.e. individual and
accurate element surface temperatures) essential in many lines
of design enquiry. For this reason, it is argued that room models
constructed from second-order (or higher) construction element
descriptions provide greater accuracy and detail whilst retaining
some of the key advantages of simplicity and low computational
demand and are, therefore, to be preferred other than for approxi-
mate and early feasibility simulation studies.

The key advantages of lumped parameter building modelling are
those of simplicity, transparency and low computational demand.
They are particularly suited to bespoke (i.e. research-based) build-
ing response modelling using either modular-graphical modelling
tools such as Simulink [9] – see for example [10–12], or equation-
based methods such as Modelica [13] or EES [14,15].

3. Reference conduction model

A key requirement for accuracy in simplified lumped parameter
building models is the correct distribution of the overall element
resistance and capacitance to ensure that the element surface tem-
peratures are accurately predicted. It is possible to attempt this
analytically as has been done by Lorenz and Masy [2] and Fraisse [3]
however these methods usually require complicated mathematical
models and are often restricted to defined surface input excita-
tions. In the present work, an optimisation procedure is designed to
adjust the resistance and capacitance distributions so that the sur-
face temperature of the simplified model matches that of a rigorous
reference model.

The reference construction element model was created from the
one-dimensional energy equation using a finite-difference scheme:

∂T

∂t
= ˛

∂2T

∂x2
(1)

A full description of the discretisation and solution procedure
of this equation as adopted in the present work applied to multi-
layer construction elements can be found in [16]. A summary of the
main discretised equations is given in the following for reference.
For the temperature distribution through the body of each layer of
material the following is used where the superscript n refers to the
current time row and n + 1 to the next time row:

Tn+1
i

= 1
2F + 1

(
Tn

i + FTn+1
i−1 + FTn+1

i+1

)
(2)

in which the Fourier number, F, can be shown to be:

F = ˛
�t

�x2
(3)

At the interfaces between two differing layers of material the
interface temperature is obtained from the following (expressed
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