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a  b  s  t  r  a  c  t

Due  to the  development  of  energy  performance  contracting  and  the  needs  for  peak  electric  demand
reduction,  the  interest  for building  energy  demand  prediction  is renewed.  Gray-box  models  are  a  solution
for  energy  demand  prediction.  However,  it is  still  difficult  to  find  the  best  level of model  complexity  and
the  good  practices  for  the training  phase.  Since  models’  order  and  parameter  identification  method  have
a strong  impact  on the forecasting  precision  and  are  not  intuitive,  a comparative  design approach  is  used
to find  the  best model  architecture  and  an adequate  methodology  for improving  the training  phase.  The
gray  box  models  are  compared  on their ability  to forecast  heating  and  cooling  demands  and  indoor  air
temperature.  An objective  function  is proposed  aiming  to minimize  both  power  and  indoor  temperature
prediction  errors.  Moreover,  for  each  model,  several  training  period  durations  are  tested.  First,  this  study
shows that  a R6C2  (second  order  model)  model  is  adapted  to  predict  the  building  thermal  behavior.
Furthermore,  the best  fits are  obtained  with  two  weeks  of  data  for  the  identification  process.  Second,  a
sensitivity  analysis  using  total Sobol  index  calculation  leads  to  validate  the objective  function  and  identify
the  most  important  parameters  for prediction.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Today’s buildings move toward low-energy standards but the
buildings’ renewal rate is very low (for instance, 1% a year in France
[1]) and building annual energy consumption remains high (for
instance at 209 kWh/m2 on average in France [2]). Therefore, it is
essential to propose solutions to reduce consumption on medium to
high-energy buildings. Potentially, significant consumption reduc-
tion can be reached by using smart control strategies of heating and
cooling systems.

Another issue is the impact of electric heating systems on the
peak demand of the electricity grid. Indeed, electric heaters were
supported in France by low electricity prices, and as a result,
demand may  exceed supply during very cold days. Building’s ther-
mal  inertia and time-of-use electricity tariffs can be used to reduce
the stress levels on the electricity network. But, to improve build-
ing control and to anticipate high price periods, precise and robust
predictive models are needed.

Multi-zone building simulation tools based on physical knowl-
edge (EnergyPlus or TRNsys) are efficient but they need very
detailed data on the building characteristics. For this reason, this
type of simulation is time consuming to parameterize [3].
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A second type of simulation is the statistical or black box
approach. This approach is adapted if limited information is known
about the building. It implies to choose a mathematical function
(i.e. polynomial, ARMAX, transfer function) which may  represent
the building thermal behavior and uses measured data to identify
its parameters [4–6]. The main difficulty is to represent nonlinear
phenomena such as power saturation. In this purpose, nonlinear
black box models are available such as artificial neural network
(ANN) [7], but their ability to predict building behavior in the case
of new control strategies not present during the learning phase is
not demonstrated. For example, it has been shown that black box
models are not able to forecast the response to load shedding if
there is no load shedding in the learning data [8].

Gray box models combine both approaches. A very simple
physical model (often mono-zone) is used and its parameters are
identified with measured data. Compared to black box models, gray
box models better predict the building thermal behavior in the case
of new control strategies [8]. Many designs of gray box models are
available; however, it remains difficult to choose the best model
structure and the methodology for the learning process.

2. State of the art on gray box building modeling

Many papers deal with gray box modeling but only a few of
them details the best practices for the learning process. Fux et al.
[9] compare four building models (1- to 4-order) on their ability
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Table 1
Examples of data size used for the identification process.

Reference Type of inverse
model

Data for
identification
process

Time step

Madsen and Holst [13] Gray box (2nd
order)

4 days 10 min

Coley and Penman [14] Gray box (2nd
order)

10 days 30 min

Braun and Chaturvedi [15] Gray box (8th
order)

7 to 14 days 1 h

Hazyuk et al. [16] Gray box (2nd
order)

60 days 1 min

to forecast indoor temperature. They use an unoccupied period
of 12 days to identify the models’ parameters and show that a
R1C1 model is efficient to forecast indoor temperature of a res-
idential building. Bacher and Madsen [10] compare 10 gray box
models (2- to 5-order) on their ability to predict indoor temper-
ature. In their study, the heat flux is an input chosen to excite
the model on a large frequency domain regardless the indoor
temperature. The reference data are measured on a single floor
unoccupied building. This methodology cannot be applied in most
of the real buildings because the heat flux is controlled via the
temperature set-point. Palomo et al. [11] use simplified models
(2- to 6-order models) to represent a multi-zone individual build-
ing. The authors conclude that, for the tested individual building,
a second order model allows a suitable prediction of the daily
energy consumption but a 4-order model is needed for high qual-
ity indoor air temperature and heating power prediction. Mejri
et al. [12] compared gray box models from order 1 to 5 and show
that increasing the model order beyond 2 does not lead to a sig-
nificant improvement and could even create unreliable physical
results. The tests were executed on a small single-floor office build-
ing.

Table 1 [13–16] gives an overview of the diversity found in the
literature concerning data size for the identification process. Rec-
ommended values vary from few days to several weeks. This review
illustrates a diversity of conclusions on gray box models. Neverthe-
less, the authors globally agreed to choose a second order model as
the simplest building model. In this paper, the model structure is
discussed using realistic data coming from simulated building with
variable occupancy profile and ventilation set-points and using a
sensibility analysis method. Moreover, the identification method is
rarely discussed in most of these studies and could deeply affect
the performances of the models. In this paper, some good practices
for identification are proposed.

3. Methodology

In this study we propose to compare four gray box models
on their ability to predict both heating and cooling demands and
indoor air temperature. All the physical parameters, the occupancy
heat gains and the ventilation mass flow rate are identified thanks
to data presented in Table 2. Synthetic learning data have been
built using a multizone building simulation (TRNsys). This solution
has been chosen since it can compare gray box models on their
ability to predict building thermal behavior without any noise and
measurement uncertainties. Weather data used for testing gray
box models in prediction are the same as those used to gener-
ate the synthetic data. In practice, these data are weather forecast
coming from a complex atmospheric model. The solar radiation
from the weather file is pretreated in order to calculate both solar
gains on the wall and through the windows to be used directly as
input in the gray box models. This pretreatment is presented here
after.

Fig. 1. Physical representation of main inputs in the simplified building model.

3.1. Selection of the semi-physic (gray box) models

Fig. 1 presents the main physical solicitations which impact the
energy demand and the indoor temperature. These physical rela-
tions can be represented by RxCy networks. The model inputs and
outputs are presented in Table 2.

All the gray box building models are presented as thermal net-
work. An RxCy model has x resistances and y capacitances.

The R3C2 model is one of the simplest physical building models
found in the literature adapted to buildings with constant airflow
ventilation. The R4C2 model is an extension of the R3C2 model with
a supplementary resistance used to characterize variable airflow
ventilation. This reference model is used as a base for setting more
complex models. This model has the disadvantage not to be able
to take into account solar flux coming on external walls. This is not
problematic in winter when this flux has a very small impact on
the load but it might be in summer when this flux has a real impact
on the load.

To better take into account solar gains, a R6C2 model is pro-
posed. Indeed, the addition of two  specific nodes (Ts and Th) enables
to split each solar flux (˚sint and ˚sext) in two  parts: For the
solar flux transmitted through the windows (˚sint), one part hits
directly the wall capacitance and the other one impacts directly
the air capacitance. This repartition is determined by the value of
Ri and Rs. The second part represents the solar flux coming on light
furniture which has a fast impact on indoor air temperature com-
pared to solar flux coming on heavy walls. For the solar flux on the
external walls (˚sext), one part hits the wall capacitance through

Table 2
Description of model inputs and outputs.

Name Description

Outputs Ti Indoor temperature (◦C)
P Thermal power (W)

Inputs OCC Occupancy profile [0 to 1]
Ve Ventilation set point [0 or 1]
Tc Temperature set-point (◦C), the regulation is supposed

to be ideal
˚sint Solar gain on the walls (W)
˚sext Solar gain transmitted through the windows (W)
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