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a  b  s  t  r  a  c  t

Building  simulation  has become  an  indispensable  decision  making  tool  since  it  is capable  of  capturing
dynamic  behavior  of  building  systems  and  predicting  impact  of  energy  saving  components.  However,
it  has  been  well  acknowledged  that  simulation  prediction  is often  significantly  influenced  by  treatment
of  uncertain  inputs.  This  paper  presents  multi-criteria  (construction  cost,  total  energy  consumption)
decision  making  of HVAC  systems  under  uncertainty.  In this  study,  a library  building  was  selected
and  modeled  using  EnergyPlus  6.0.  There  were  two HVAC  candidates:  (1)  variable  air  volume  (VAV)
for  interior  zone  +  fan  coil  unit  (FCU)  for  perimeter  zone  + gas  boiler  + electric  chiller,  (2)  VAV  +  FCU  + gas
boiler  +  electric  chiller  +  ice  thermal  storage  system.  For  uncertainty  analysis,  unknown  inputs  were  iden-
tified  based  on  the  literature  and  the Latin  hypercube  sampling  (LHS)  method  was  employed.  Then,
Bayesian  decision  theory  was  applied  to solve  stochastic  decision  making.  In particular,  the  paper  includes
preferences  of building  stakeholders  (three architects,  four  simulation  experts,  three  HVAC  experts)
by  using  Markov  chain  Monte  Carlo  (MCMC).  It is shown  that  such  quantitative  stochastic  appraisal
yields  more  meaningful  information  than  the  traditional  deterministic  approach,  and  helps  to  improve
confidence  in  simulation  results.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

With advances in numerical methods, computing power, and
quantitative/qualitative growth of simulation knowledge, building
energy simulation has been recognized as a practicable approach
during building design process since it provides meaningful infor-
mation and better design support such as answering what-if
scenarios, system dimensioning, fine-tuning, etc. However, deci-
sion making involves the following unresolved issues: (1) so far,
decision making studies have employed the deterministic approach
without taking into account stochastic nature of the building and
its subsystems [1–6], (2) classical optimal design problem has been
focused on a single criterion even though the decision making
involves multi-criteria [7–12], (3) most of the design alternatives
are assessed based on subjective judgment and engineering intu-
ition [13–16]. In other words, decision making process must deal
with performance assessment of design alternatives under uncer-
tainty as well as multiple criteria (e.g., cost, energy efficiency,
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thermal comfort, indoor air quality, daylighting, etc.,) based on
preferences from various building stakeholders.

With this in mind, stochastic multi criteria decision making
(MCDM) enhanced by Bayesian inference would be a potential
recipe, which is the theme of this study. Bayesian inference employs
an MCDM method based on the subjective utility function of deci-
sion makers (DM). The utility function presents an attitude and
preference of the DM towards risk. The previous studies [1,17]
presented a decision making addressing the following criteria
(investment cost, thermal comfort, and energy efficiency) using a
joint utility function. But those studies assumed a linear marginal
utility function regardless of the subjective utility of diverse DMs
(e.g., designer, engineer, simulation expert, occupants etc.). To
solve for such limitation, the authors employed a multi-attribute
utility function (MAUF) with the best trade-offs, and Bayesian infer-
ence for obtaining a posterior distribution of unknown quantities
(expected utilities and weighting factors). Bayesian inference is
a statistical approach based on Bayes’ rule to estimate posterior
distributions of the unknown quantities over distributions of
observed data. In area of building simulation, Bayesian inference
has been successfully used to calibrate uncertain inputs in either
normative calculation or transient simulation [18–20].

For energy modeling of a given building and its HVAC systems,
EnergyPlus 6.0 was selected. A screening method was then applied
to identify dominant inputs on simulation outputs. The Monte Carlo
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a1, a2 (dimensionless) design alternative
U(dimensionless) utility function
E(dimensionless) expected value
x1 (KRW) construction cost
x2 (kW h) total energy consumption
P(� |y ) (dimensionless) posterior distribution
P(y

∣∣� ) (dimensionless) likelihood function
�(�) (dimensionless) prior distribution
� (dimensionless) unknown inputs
y (dimensionless) observation value
� (dimensionless) mean value
� (dimensionless) standard deviation
t (dimensionless) the number of uncertain inputs
g (dimensionless) the number of sampling grid
r (dimensionless) the number of trajectories
ki (dimensionless) weighting factor
pi (dimensionless) regression coefficient
a,  ̌ (dimensionless) shape parameters
� (dimensionless) gamma  function

technique was used for uncertainty propagation of the dominant
inputs. The MCDM problem in this paper was then introduced to
determine an optimal alternative of HVAC system with the best
trade-offs between construction cost and total energy consump-
tion.

2. Stochastic multi-criteria decision making

2.1. Monte Carlo simulation for uncertainty analysis

Over the last several decades, building simulation tools have
been developed enormously. However, simulationists often find it
difficult to determine accurate simulation inputs. In addition, the
simulation task includes several model biases (numerical uncer-
tainty, simplifications of the reality, subjective judgment, and
modeling assumptions etc.). Fig. 1 shows the problems and issues
in the building performance simulation and assessment. It is highly
probable that 10 different simulationists will present 10 different
outputs for a given single building. In other words, to improve the
confidence of the simulation model under strong stochastic nature,
it is rational to adopt not a deterministic approach but a stochastic
approach.

The Monte Carlo simulation has been widely used to account
for such stochastic nature [22]. de Wit  [1] and Macdonald [2]
presented remarkable results for ascertaining importance of uncer-
tainty and sensitivity analysis in area of building simulation. de
Wit  [1] conducted uncertainty and sensitivity analysis of indoor
thermal comfort with natural ventilation, and Macdonald [2] pre-
sented parameter uncertainty as well as code uncertainty in a
building simulation tool (esp-r). Followed by the aforementioned
two Ph.D. theses, extensive uncertainty and sensitivity analyses
were conducted on diverse performance aspects, e.g., energy effi-
ciency, thermal comfort, indoor air quality, etc. [3–6,19,23–30].

The Monte Carlo simulation propagates simulation cases within
probability range of selected uncertain inputs, and then itera-
tively performs simulation runs. The selection and probability
distribution of uncertain inputs is one of the most important parts
for uncertainty analysis [31]. To select the dominant inputs, a
screening method is usually used to analyze the influence of inputs
on outputs. With the chosen dominant inputs obtained from the
screening method, Latin hypercube sampling (LHS) method, which
is a form of stratified sampling, was employed for the uncer-
tainty propagation [32,33]. The LHS method could provide good

convergence of parameter space with relatively few samples com-
pared to the simple random sampling [33–35].

2.2. Multi criteria decision making using Bayesian theory

Decision making is a continuous and iterative search process
for finding an optimal design solution. Gololov and Yezioro [36]
presented an MCDM procedure using compromise programming
(CP) algorithm which was  based on an aggregated function having
assigned weighting factors according to a DM’s preference. National
renewable energy laboratory (NREL) developed an MCDM-23 pro-
gram that has a weighting scheme [37]. de Wit  [1] and Kim and
Augenbroe [17] showed a method to select the best alternative in
decision spaces using Bayesian decision theory. In the light of the
previous studies, the decision making studies have evolved from a
‘single criterion’ to ‘multi criteria’ [38].

Not only is it necessary to account for multi criteria but also the
stochastic nature of the building or systems must be reflected dur-
ing the decision making. In this study, the authors used a multi
attribute utility theory (MAUT), which is a prominent method
in decision-making under uncertainty [39]. The MAUT allows
decision makers to account for their preferences in the form of
multi-attribute utility functions (MAUF). The MAUT technique can
be applicable to a stochastic (non-deterministic) MCDM prob-
lem by using Bayesian decision theory. The authors performed
uncertainty analysis using Monte Carlo simulation and then used
MAUT together with Bayesian inference and presented the decision
framework using uncertain simulation outputs on a decision space.

Bayesian decision theory is a normative theory using subjective
preference of DM,  and is suitable for complex decision problems
under uncertainty [1]. The theory uses the utility function in which
the preference of DM is reflected [40]. A design alternative (a1) with
a higher expected utility (E

{
Ua1 (x1, x2)

}
) is selected, as shown in

Eq. (1). The utility function can select the most preferred alternative
by eliminating the inferior solutions from design option space.

a1 � a2 ⇔ E
{

Ua1 (x1, x2)
}

� E
{

Ua2 (x1, x2)
}

(1)

where a1 and a2 are design alternatives, E is an expected value, U
is an utility function, x1 and x2 are attributes (x1: construction cost,
x2: total energy consumption) generated by design alternatives (a1
and a2) respectively.

It should be noted that building design is involved with different
building stakeholders (e.g., architect, owner, engineer, occupants,
etc.,), and influenced by the subjective preference of DMs. To settle
this problem, Bayesian inference was  applied to obtain a poste-
rior distribution of expected utilities and the weighting factors of
different building stakeholders. Bayesian inference provides the
posterior distribution by combining two  ingredients. As shown in
Eq. (2), two ingredients consist of a likelihood function (P(y

∣∣� )) of
unknown quantities (�) and the observed value of y, and a prior
distribution (�(�)) of � before the observation of the value of y. The
integration of marginal distribution (P(y) (Eq. (3)) is a prerequisite
to obtain a posterior distribution (P(� |y )) and is very difficult to cal-
culate. To solve this, the authors used an MCMC  method to obtain
the posterior distribution of unknown quantities using two ingre-
dients (likelihood function and prior distribution) as shown in Eq.
(4).

P(� |y ) =
P(y

∣∣� )�(�)

P(y)
(2)

P(y) =
∫

P(y
∣∣� )�(�)d� (3)

P(� |y ) ∝ P(y
∣∣� ) × �(�) (4)
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