Contents lists available at ScienceDirect

Energy and Buildings

journal homepage: www.elsevier.com/locate/enbuild

Life-cycle energy and greenhouse gas analysis of three building types in a residential area in Lisbon

Joana Bastos^a, Stuart A. Batterman^b, Fausto Freire^{a,*}

^a ADAI-LAETA, Department of Mechanical Engineering, University of Coimbra, Pólo II Campus, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal ^b Department of Environmental Health Sciences, University of Michigan, 109 Observatory Drive, Ann Arbor, MI 48109-2029, USA

A R T I C L E I N F O

Article history: Received 5 April 2013 Received in revised form 25 September 2013 Accepted 1 November 2013

Keywords: Life-cycle assessment (LCA) Residential buildings Primary energy Greenhouse gas (GHG)

ABSTRACT

Residential buildings consume a large fraction of energy and thus represent a major opportunity for reducing energy requirements and greenhouse gas (GHG) emissions. This article presents a life-cycle energy and GHG analysis of three representative residential building types in a well-known area in Lisbon (*Bairro de Alvalade*). The life-cycle model focused on building construction, retrofit and use phases, applied an econometric model to estimate energy use in Portuguese households, and considered two functional units: per square meter per year and per person per year. Over the buildings' 75-year lifespan, the use phase accounted for most (69–83%) of the primary energy requirements and GHG emissions. Larger buildings have lower life-cycle energy requirements and GHG emissions on a square meter basis. On a per person basis, however, this pattern is reversed and larger buildings are associated with higher energy requirements and GHG emissions. Due to the considerable variability and uncertainty associated with life-cycle analyses of buildings, the use of both occupancy- and area-based functional units is recommended.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In 2010, residential buildings accounted for around 27% of the final energy consumption in the EU-27 and about 16% in Portugal [1]. Thus, residential buildings represent a major opportunity for reducing energy requirements and greenhouse gas (GHG) emissions [2]. The potential of urban and architectural design to reduce energy and GHG emissions has been discussed for some decades [3–5], and research is needed to assess and ideally to confirm its specific influence on energy requirements and GHG emissions [4,6,7]. However, life-cycle (LC) analyses of buildings present many methodological issues and choices, some of which are associated with high uncertainty and variability regarding use phase energy requirements, building lifespan, energy production mix, and other factors that lead to a large range of LC results and that can impede interstudy comparisons.

This paper presents a life-cycle (LC) energy and GHG analysis of three building types in a residential area in Lisbon, Portugal. The assessment examines construction, retrofit and use phases. The main objectives are to quantify the primary energy requirements and GHG intensity of the building types, to assess contributions of each phase, and to compare the three building types. Two functional units are considered in the comparative analysis: per square meter per year and per person per year. The subsequent sections of the paper review LC studies of residential buildings in urban areas, characterize the building types, describe the life-cycle model, present and discuss the results, and give study conclusions.

1.1. Life-cycle studies of residential buildings

Over the last several decades, many authors have highlighted the importance of a LC perspective to understand the environmental impacts associated with buildings [e.g. 8-11]. Table 1 summarizes selected LC studies of residential buildings, focusing on conventional buildings, i.e., built according to practice prevailing at the time and location [12], as opposed to passive or low energy designs. In one of the first LC studies of buildings, Adalberth [8] calculated the LC energy demand of three dwellings in Sweden and found that the operating phase was associated with 85% of the energy demand. Keoleian et al. [13] calculated LC energy and GHG emissions of a standard house (SH) and an energy efficient house (EEH), both in Michigan, USA. The LC energy and GHG emissions were approximately 1400 MJ/(m^2 year) and 89 kg CO₂eq/(m^2 year) for the SH, and 560 MJ/m² year and 32 kg CO₂eq/(m² year), for EEH, nearly three times lower. These and most other studies examining residential buildings have several common findings, such as the operation phase of buildings being responsible for the major share

^{*} Corresponding author. Tel.: +1 351 239790739; fax: +1 351 239790701. *E-mail addresses:* jbastos@student.dem.uc.pt (J. Bastos), stuartb@umich.edu (S.A. Batterman), fausto.freire@dem.uc.pt (F. Freire).

^{0378-7788/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.enbuild.2013.11.010

Table 1

Life-cycle (LC) studies of residential buildings.

Author	Year	Analysis	Case-study	Location	LC phases	Lifespan (years)	Functional units	Main results
Adalberth [8,15]	1997	Life cycle energy use of three dwellings	3 single-unit dwellings	Sweden	(1) Construction (2) Use (3) End-of-life	50	1 m ² × year 1m ² × 50 years	Construction 810–1020 kWh/m ² (manufacturing: concrete 19–28%, wood 16–28%, plastic 18–23%) Total energy 7600–8800 kWh/m ² -50 years, 152–172 kWh/m ² year
Fay et al. [19]	2000	Primary energy analysis of a detached house and an alternative with additional insulation	Detached house	Melbourne, Australia	(1) Construction (2) Use	100	$1 \text{ m}^2 \times 100$ years	Embodied energy 35.4 (base) and 36.5 GJ/m ² (add. insulation) LC energy 140 GJ/m ² (base) and 133 GJ/m ² (add. insulation)
Adalberth [10]	2001	Assessment of four multi-family buildings	4 apartment buildings	Sweden	(1) Construction (2) Use (3) End-of-life	50	$1m^2 imes50$ years	Use phase 70–90% of all LC impacts (85% of energy requirement) LC GHG 1.5 ton CO ₂ eq/m ² -50 years for all buildings LC energy 6100–9100 kWh/m ² -50 years
Keoleian et al. [13]	2001	LC energy, GHG and costs of a standard house (SH) and of an energy efficient house (EEH)	Detached house and alternative	Michigan, USA	(1) Construction (2) Use (3) End-of-life	50	1 house 1 m ² × year	LC energy 6400 (EEH) and 16,000 GJ (SH) LC GHG 370 (EEH) and 1010 (SH) metric tons CO ₂ eq (EEH) Use phase 91% (SH)
Norman et al. [6]	2006	Energy use and GHG emissions from a low density (LD) and a high density (HD) development	Apartment building and detached dwellings	Toronto, Canada	(1) Construction (2) Use (3) Users transportation	50	1 m ² × year 1 person x year	Construction energy 5 (HD) to 7(LD) GJ/person-year, 92 (LD) to 109 (HD) MJ/m ² year Use energy 28 (HD) to 50(LD) GJ/person-year, 619 (LD) to 643 (HD) MJ/m ² year
Asif et al. [25]	2007	Embodied energy and other environmental impacts of a house	Semidetached house	Scotland	(1) Construction	n/a	1 house	Embodied energy 227 GJ (concrete 61%, ceramic tiles 15% and timber 14%) CO ₂ around 120 ton (99% concrete and mortar)
Citherlet and Defaux [22]	2007	Comparison of three house variations (insulation, energy production and use of renewable energy)	Single-family house (3 variants)	Lausanne, Switzerland	(1) Construction (2) Use (3) End-of-life	n/a	$1m^2 imes$ year	LC energy (Swiss mix) = 580 (standard house) to 40 MJ/m ² year LC GHG 27 (standard house) to 10 kg CO2eg/m ² year
Blengini [18]	2009	Primary energy, GHG emissions and other environmental impacts, with alternative end-of-life scenarios	Apartment building	Turin, Italy	(1) Construction (2) Use (3) End-of-life	40	1 m ² × year	Construction phase 91 MJ/m ² year and 8 kg CO ₂ /m ² year LC energy 999 MJ/m ² year (93% use) and 67 kg CO ₂ eq/m ² year (90% use)
Gustavsson and Joelsson [16]	2010	Primary energy and CO ₂ emission of conventional and low-energy buildings	11 buildings (5 types with variations)	Sweden	(1) Construction (2) Use	50	$1m^2 imes 50years$	Embodied energy 550–1050 kWh/m ² (conventional buildings) LC energy (coal based resistance heating) 7500–11,500 kWh/m ²
Ortiz-Rodriguez et al. [26]	2010	Primary energy consumption and environmental impacts of a dwelling in Spain and another in Colombia	2 single-family houses	Spain and Colombia	(1) Construction (2) Use (3) End-of-life	50	1 m ²	Construction energy 4940 (Colombia) and 4180 MJ/m ² (Spain), GHG 238 (Colombia) and 192 kg CO ₂ eq/m ² (Spain) Use phase GHG 2250 (Spain) and 599 kgCO ₂ eq/m ² (Colombia)
Nemry et al. [11]	2010	Analysis of 72 building types representative of the building stock for the EU-25	72 building types	EU-25	(1) Construction (2) Use (3) End-of-life	20–40 years	1 m ² × year	Use phase is the most important LC phase; Buildings geometry was reflected in the higher energy demand in single-family houses as compared to multi-family and high-rise buildings
Monteiro and Freire [17,21]	2012	Assessment of a house considering two operational patterns (different occupancy and comfort levels)	Single-family house	Coimbra, Portugal	(1) Construction (2) Use	50	total living area × 50 years	LC primary energy 800-1600 G (average 182 MJ/m ² year) LC GHG 58-115 ton CO ₂ eq (average 13 kg CO ₂ eq/m ² year)

Download English Version:

https://daneshyari.com/en/article/263158

Download Persian Version:

https://daneshyari.com/article/263158

Daneshyari.com