Contents lists available at ScienceDirect

Energy and Buildings

journal homepage: www.elsevier.com/locate/enbuild

Advancement of solar desiccant cooling system for building use in subtropical Hong Kong

K.F. Fong*, T.T. Chow, C.K. Lee, Z. Lin, L.S. Chan

Building Energy and Environmental Technology Research Unit, School of Energy and Environment & Division of Building Science and Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China

ARTICLE INFO

Article history: Received 15 March 2010 Received in revised form 18 June 2010 Accepted 10 August 2010

Keywords: Desiccant cooling Solar air-conditioning Absorption refrigeration Evacuated tubes Photovoltaic panels Photovoltaic/thermal panels

ABSTRACT

The solar desiccant cooling system (SDCS) had a saving potential of the year-round primary energy consumption as compared to the conventional air-conditioning system for full fresh air application in the subtropical Hong Kong. In order to further enhance its energy efficiency, advancement of the basic SDCS was carried out through a strategy of hybrid design. Six hybrid system alternatives of SDCS were therefore proposed, three for full fresh air design while another three for return air design for the building zone. Year-round performance evaluation of each solar hybrid desiccant cooling system was conducted for typical office application under different climatic and loading conditions. All the six hybrid system alternatives were found technically feasible, with up to 35.2% saving of year-round primary energy consumption against the conventional air-conditioning systems. Among the hybrid alternatives, recommendations were made on the SDCS hybridized with vapour compression refrigeration for full fresh air design; and the SDCS hybridized with vapour absorption refrigeration for return air design, since they had the saving potentials of both primary energy and initial cost. These two hybrid system alternatives used evacuated tubes, a more economical type of solar collectors compared to the PV or PVT panels.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Facing the catastrophic disasters around the globe due to climate change in recent years, it is urgent to minimize the use of fossil fuels for electricity generation, and make use of alternative energy as far as possible. It is essential to have effective cut of carbon emission in daily life, and air-conditioning and refrigeration belongs to one of the significant energy-consuming items in buildings. Solar desiccant cooling system (SDCS), which is a type of solar air-conditioning, is featured with direct provision of supply air for building use [1,2]. A number of demonstration projects have been built to serve air-conditioning in different climates [3-5]. Fig. 1 shows the schematic diagram of a basic SDCS, its components mainly include the desiccant wheel, rotary heat exchanger, evaporative coolers, solar collectors, hot water storage tank, hot water pump (HWP), desiccant water pump (DWP), fresh air fan (FAF) and exhaust air fan (EAF). Auxiliary gas heater is commonly adopted to supplement the heat demand. A heating coil is used to provide regenerative heat for the desiccant wheel, the amount of hot water is modulated by a heating coil valve (HCV).

The basic SDCS has the advantages of possible use of solar thermal energy and enhancement of indoor air quality due to full fresh air provision. However, the primary energy consumption has been found larger than the other solar air-conditioning systems, such as solar absorption or adsorption refrigeration system, as well as the conventional vapour compression refrigeration system, in which the return air design can be used in the air side system [6]. In SDCS, however, the return air design is not feasible due to high zone cooling load intensity in the hot and humid region [7]. As a result, the idea of solar hybrid desiccant cooling system is adopted, and the design strategy is to integrate the desiccant cooling with a separate refrigeration cycle, so that the latent and sensible cooling loads of a building zone can be effectively shared and handled.

This paper is structured in the following way. In Section 2, development of the six design alternatives of solar hybrid desiccant cooling system is discussed. Section 3 describes the dynamic simulation models of the major components of the hybrid alternatives. In Section 4, the simulation parameters and related details of the alternatives are presented. Section 5 discusses the results of year-round evaluation based on various performance indicators for the six hybrid system alternatives, as well as the conventional air-conditioning systems. Section 6 is the conclusion.

2. Design of solar hybrid desiccant cooling systems

Through the hybrid design approach, different system alternatives were proposed, either for full fresh air design or return air design for the building zone. Generally, a separate chiller was

^{*} Corresponding author. Tel.: +852 2788 8724; fax: +852 2788 9716. E-mail address: bssquare@cityu.edu.hk (K.F. Fong).

^{0378-7788/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.enbuild.2010.08.008

Nomenc	lature
~	half beight of sign began aligned design and types l(m)
<i>u</i>	indi ineigitt of all channel inside desiccant wheel (iii)
A	area of air channel inside desiccant wheel (m ²)
D	half width of air channel inside desiccant wheel (m)
С	specific heat capacity (KJ kg ⁻¹ K ⁻¹)
C_v	volume coefficient of compressor
СОР	coefficient of performance
COP _{ch}	coefficient of performance of chiller
COP _{ch,a}	coefficient of performance of vapour absorption
	chiller
COP _{ch,c}	coefficient of performance of vapour compression chiller
COPdac	coefficient of performance of desiccant cooling
D	diffusion coefficient of water vapour in air $(m^2 s^{-1})$
Ea	electrical energy consumption (kWh)
E_{α}	gas energy consumption (kWh)
-g F.,	primary energy consumption (kWh)
Ep En ann	primary energy consumption of auxiliary provision
₽p,uux	(kWh)
E _{p,cent}	primary energy consumption of central plant
	including chiller and desiccant cooling, or that of
	chiller alone for conventional system (kWh)
E _{p,para}	primary energy consumption of all the parasitic
Г	primary color opergy gain(c) (1/1/h)
с _{p,solar}	primary solar energy gam(s) (KVVII)
E _{p,total}	primary energy consumption of entire alf-
-	conditioning system (KWh)
EMF	back emf of motor (V)
f	mass per unit length $(kg m^{-1})$
h	heat transfer coefficient $(W m^{-2} K^{-1})$ or specific
	enthalpy (kJ kg ⁻¹)
Ι	motor current (A)
k	thermal conductivity (W m ⁻¹ K ⁻¹)
Ky	mass transfer coefficient (kg m ⁻² s ⁻¹)
Lp	perimeter of air channel inside desiccant wheel (m)
т	mass flow rate (kg s ⁻¹)
п	polytropic compression index of compressor
Nu	Nusselt number
Р	pressure (kPa)
Psat	saturated vapour pressure of LiBr solution (kPa)
a	relative amount of water in silica gel $(kg kg^{-1})$
0	heat transfer rate (kW)
Q _{aux}	input of auxiliary energy provision (kW)
Oragan	heat input for regeneration (kW)
	solar gain from solar collectors (kW)
≪solar R	motor resistance (Ω)
RH	relative humidity of air
CE	colar fraction
SI ^r	solar fraction of solar driven shiller
Sr _{ch}	solar fraction of designent debumidification
Sr _{dec}	solar fraction of desiccant denumidification
SF _{hyb}	solar fraction of solar hybrid desiccant cooling sys-
C1	tem
Sh	Sherwood number
t	time (s)
Т	temperature (°C)
T_m	log mean temperature difference (°C)
и	air velocity (m s ⁻¹)
UA	overall heat transfer value (kW K ⁻¹)
V	motor voltage (V)
Vc	swept volume of compressor (m ³)
Win	power input to motor (kW)
Y	humidity ratio of air (kg kg ⁻¹)
Ζ	distance in axial direction (m)

Greek letters		
$\alpha_1 \dots \alpha_7$	coefficients in Eqs. (3) to (13) (-, s^{-1} , -, $K s^{-1}$, s^{-1} ,	
	$K s^{-1}, K s^{-1})$	
β	motor torque constant (N m A ⁻¹)	
Δh	specific enthalpy change across compressor	
	$(kJ kg^{-1})$	
ΔH_a	heat of adsorption (kJ kg ⁻¹)	
ΔH_{v}	specific latent heat of vaporization of water $(kJ kg^{-1})$	
η_e	energy efficiency for electrical energy converted	
	into primary energy	
η_g	energy efficiency for gas energy converted into pri-	
-	mary energy	

- ξ LiBr solution concentration
- density $(kg m^{-3})$ ρ
- torque (Nm) τ
- rotational speed (rad s^{-1}) ω

1

Subscript	ts
а	air
ab	absorber
abw	absorber water
ai	absorber inlet
ао	absorber outlet
cond	condenser
CW	cooling or condenser water
dis	condenser inlet
eq	condition of air in equilibrium with desiccant wall
evap	evaporator
ew	chilled water
fa	fresh air
gen	generator
gi	generator inlet
go	generator outlet
hw	regenerative water
i	inlet
mat	matrix material in desiccant wheel
0	outlet
ра	processed air after rotary heat exchanger
r	refrigerant
S	LiBr solution
sa	supply air
sg	silica gel
sshxr	solution-to-solution heat exchanger
suc	evaporator outlet
sv	saturated vapour
v	water vapour
w	liquid water

involved to share off the sensible cooling load of the building zone, so that the desiccant cooling would concentrate on handling the latent load. In addition, different types of solar collectors, hence different corresponding system configurations and auxiliary energy provisions, were considered in the study. The first three alternatives adopted full fresh air design, with a similar approach of the basic SDCS. In order to evaluate the possibility of further advancement of the SDCS, three more alternatives were evolved for return air design. As a result, altogether six system alternatives of solar hybrid desiccant cooling were generated, they are:

- a. SDCS for full fresh air design, hybridized with conventional vapour compression refrigeration (SDCS_{FA}-VCR);
- b. SDCS for full fresh air design, hybridized with direct-current (DC)driven vapour compression refrigeration using photovoltaic (PV) panels (SDCS_{FA}-DVCR_{PV});

Download English Version:

https://daneshyari.com/en/article/264568

Download Persian Version:

https://daneshyari.com/article/264568

Daneshyari.com