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a b s t r a c t

Buckling is one of the typical failure modes for single-layer reticulated shells (SLRSs). To prevent buckling,
it is necessary to predict the critical buckling load and post-buckling path of the structure, and hence,
structural stability analysis should be carried out. Unlike ideal structures, SLRSs with stochastic
imperfections could experience different failure modes with varied post buckling paths. In the present
paper, a stochastic imperfection modal superposition method is proposed for SLRS with stochastic
imperfections. The SLRS structure is modeled using Timoshenko beams. Considering several possible
buckling modes and random variables, Monte Carlo simulations are performed to analyze the
superposition of buckling modes of the structure with stochastic imperfections. The modal combination
factor is treated as a random variable and different distributions types are used for comparisons, such as
uniform distribution, Gaussian distribution, T-Gaussian distribution, and triangular distribution. Based on
parametric study results and comparisons with other traditional stability analysis method, the proposed
method is found to provide good accuracy at considerably less computation cost.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few decades, with the emergence of new building
materials and building techniques, long span space reticulated
shells are being built wordwide. Among the different types of
reticulated structures, single-layer reticulated shell (SLRS) has
been used in the design for modern stadiums, planes, ships,
spaceships, vehicles, and many other civil infrastructures.
Buckling, which is one of the typical failure modes for SLRSs, causes
embrittlement and could lead to a catastrophic disaster. However,
the buckling mechanism and characteristics of SLRSs have not been
sufficiently investigated [1,2]. To ensure the structural safety and
avoid buckling induced disasters, it is essential to predict the
critical buckling load and identify the post buckling equilibrium
path of the structure. To this end, many methods, such as artificial
spring method [3], displacement control method [4], arc-length
method [5], and automatic incremental solution techniques [6],
have been proposed. However, as the structural imperfections
widely exist in structural members, structural failure modes and
stability capability could be different [7,8]. Therefore, it is neces-
sary to include the structural imperfection factor in the stability

analysis methods. After the quasi-shell method was developed
[7–9], Koiter first put forward an incremental theory for imperfec-
tion sensitivity analysis and the theory was later improved by
Thompson and Hunt [10], Budiansky [11], and Hutchinson [12].
However, because these imperfections are applied to only a very
small region of the structure, it is very difficult to apply the theory
to complex structures.

In addition to analytical approaches, many deterministic
numerical simulation methods, such as optimization method
[13], critical imperfection modal method (CIMM) [14], and consis-
tent imperfection modal method (CoIMM) [15] were proposed. In
the CIMM, the imperfect structure is slightly different from the
ideal structure, and hence it is very difficult to apply the method
for large and complex structures. In the CoIMM, the lowest
buckling mode is assumed to be associated with the structure
displacement pattern when the structure begins to lose stability.
The structural imperfection that is similar to the mode is defined
as the least favorable imperfection of the structure. However, the
assumption has not been validated and the lowest buckling mode
might not be the least favorable imperfection. Later, another
assumption that the imperfection mode is a combination of some
buckling modes was proposed and validated [16]. Hence, the first
4 combination factors are calculated first using CoIMM. Then, the
imperfection mode, which is related to individual or combined
buckling modes, is obtained with least critical load. However, no
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random effects on the modal combination coefficient for the
imperfection mode are considered.

For existing structures with stochastic defects, structural imper-
fections can be treated as a random variable. It was soon realized
that a realistic approach to the problem could be achieved only
by taking into account the inherent randomness of the imperfect
geometries [17]. Based on the assumption that the initial imperfec-
tions are normally distributed, stochastic structural stability capa-
bility was predicted using Monte Carlo simulations. Later, the
stochastic imperfection modal method (SIMM) was proposed and
stability capability was assessed with a higher accuracy consider-
ing the randomness of the node imperfections [18,19]. However,
the numbers of random variables are as high as three times of
the number of nodes in the two methods mentioned earlier. As a
result, the calculation cost could be very high for a complex
structure with a large number of elements and nodes. In the
present study, to evaluate the structural stability performance of
reticulated shells with stochastic imperfections, a stochastic
imperfection modal superposition method (SIMSM) is proposed
for SLRSs. The SLRS structure is built using Timoshenko beams
and Monte Carlo simulations are performed to include the stochas-
tic imperfections of the structure in the stability analysis. The
modal combination factor is treated as a random variable and dif-
ferent distribution types are used, such as uniform distribution,
Gaussian distribution, T-Gaussian distribution, and triangular
distribution. For several modes and random variables, the newly
proposed method has better accuracy than the traditional Monte
Carlo method and SIMM. Therefore, a large calculation cost does
not need to be incurred for complex structures. The present paper
is organized in the following sections. In Section 2, SIMSM is
proposed. The probability model of the modal participation factor
for reticulated shells is established based on the eigenvalue
buckling analysis. Structural stability capability is analyzed by
the proposed SIMSM method and Monte Carlo method. Section 3
presents a numerical example wherein the structural stability
analysis is carried out for both ideal structures and structures with
imperfections using the proposed SIMSM and Monte Carlo simula-
tions. Parametric study is carried out in Section 4.

2. Stochastic imperfection modal superposition method

2.1. Stability equation for reticulated shells with imperfections

Many discretization methods, including semi-analytical and
semi-discretizing method and the beam-column theory are used
for structural stability analysis [9,19]. In the present study, nonlin-
ear finite element method (FEM) and Timoshenko beam theory are
used and the tangential stiffness matrix equation for a three-
dimensional spatial beam can be expressed as [8,19,20]:

½KT� ¼ ½K0� þ ½KL� þ ½Kr� ð1Þ
where [K0] denotes linear stiffness matrix, and [KL] denotes initial
displacement matrix, and [Kr] denotes geometrical stiffness matrix
of element.

Assuming the geometric imperfection vector of structure is
{DX}, the new node coordinate can be updated as

fXg ¼ fDXg þ fX0g ð2Þ
where {X0} is node coordinate vector of ideal structure.

The incremental equilibrium equation can be obtained as the
following:

½KT�fDag ¼ fDQg ð3Þ
where {Da} is the incremental displacement vector and {DQ} is the
unbalanced force vector. The equation can be solved using Newton-

Raphson method and arc-length method. The displacement incre-
ment of every load step and the equilibrium path in the whole load-
ing history can be obtained.

2.2. Use of SIMSM to analyze stability

To analyze the stability of an SLRS with stochastic
imperfections, the SIMSM is proposed in the present study. In the
proposed method, stochastic finite element stiffness equations
are built and solved by introducing a combination equation of
buckling modes for the imperfection mode. At first, the eigenvalue
ki (i = 1, 2, . . .,m) and corresponding buckling mode {Ui} are
obtained by eigenvalue buckling analysis are obtained; here, m is
the number of combined modes.

To consider random geometric imperfections, the node coordi-
nate is treated as a random variable. The randomness without
adjusting the amplitude, {DX}0, can be obtained as

fDXg0 ¼
Xm

i¼1

ðrifUigÞ ð4Þ

where r1, r2, . . ., r are the combination factors, which are assumed to
be independent random variables, and {Ui} is ith buckling mode.
The combination factors are assumed to follow uniform
distributions in the range of [�1, 1]. For each buckling mode, the
displacement in the buckling modal shape of each node satisfies
the following equation,

maxðUi1;Ui2; . . .UinÞ ¼ 1 ð5Þ
where n is the node number and Uin is the displacement of node n in
the ith buckling mode.

The amplitude of {DX}0 is adjusted to obtain {DX}, whose
amplitude is R.

fDXg ¼ R=max DX0
1;DX

0
2; . . . ;DX

0
n

� �fDXg0 ð6Þ
Based on Eq. (2), the node coordinate vector of the imperfect
structure can be obtained:

fXg ¼ fDXg þ fX0g ð7Þ
The stochastic finite element stiffness equation can be obtained

½KT�fDag ¼ fQg � fFg ð8Þ
where [KT] is the stiffness matrix, {Da} is the incremental displace-
ment vector. It is noteworthy that [KT], {Da}, and {F} are the func-
tions of random variable ri,

Eq. (8) can be solved by using the Monte Carlo sampling method
and deterministic nonlinear finite-element analysis. The probabil-
ity model of f (r:u) for the random variable {r} can be built, where
{u} is the parameter vector. After the first sampling, the vector of
combination factors can be obtained:

frijg ¼ fr1jg ði ¼ 1;2; . . . ; t; j ¼ 1;2; . . . ; mÞ ð9Þ
where rij is the stochastic combination factor of the jth mode for the
ith sampling, and t is the total sampling times.

By introducing Eq. (9) into Eq. (4) and considering Eqs. (5)–(7),
the node coordinate vector of imperfect structure, {X}, can be
obtained. Using the updated {X}, a new model can be obtained,
and Eq. (8) can be updated. By solving Eq. (8), [KT] can be obtained
for every load step in the entire loading history. Now,

Detð½KT�Þ ¼ 0 ð10Þ
When Eq. (10) is satisfied for the first time, the structure reaches its
first critical state. Thereafter, the load factor {q} and buckling mode
{Us1} can be obtained, and the critical load factor kcl is

kclð1Þ ¼ fqg ð11Þ

474 H. Liu et al. / Engineering Structures 124 (2016) 473–479



Download English Version:

https://daneshyari.com/en/article/265641

Download Persian Version:

https://daneshyari.com/article/265641

Daneshyari.com

https://daneshyari.com/en/article/265641
https://daneshyari.com/article/265641
https://daneshyari.com

