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a b s t r a c t

Bi-concave cable truss systems are not only aesthetically appealing but they also offer elegant solutions
for spanning large spans required in modern buildings such as convention centres, sport arenas and
bridges. These structures, however, are notoriously difficult to model correctly using non-numerical
based methods. The existing analytical methods are limited to uniformly distributed loads on half or
the entire span, and do not include the stays in the calculations. This paper details a novel analytical
method that not only covers wide spectra of loads, including both uniformly distributed and concen-
trated loads on any part of the span, but also includes the stays in the calculations. The mathematical for-
mulation was based on the fundamental assumption that the hangers form a continuous and inextensible
diaphragm. The main two nonlinear equations describing the cable thrusts, unknowns of the problem,
were calculated using an orthogonal displacement equation based on the boundary conditions of the
cable ends at the anchorages. The predicted results are compared to finite element analysis, and good
agreement was found across all the load configurations. The presented method was found to be very
efficient and reliable.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The use of cable systems in construction is not only aestheti-
cally appealing but offers plenty of opportunities for innovation
in the art of building. Because of their lightweight and high
strength, they constitute elegant solutions for spanning large spans
required in modern buildings such as convention centres, sport
arenas and bridges. As the name suggests, the main structural sys-
tem is the cable. With no compression or flexural stiffness, it can
only be subject to tensile forces. They are referred to as tension
structures, and from this characteristic stems the need to pre-
tension the cable before its use, the effect of which plays an extre-
mely important role in the stability of the structure whose own
weight is particularly low. This pre-tension or preload represents
the initial load that needs to be applied so that in any case of over-
load none of the elements becomes compressed. Because of their
lightweight however one cannot ignore the susceptibility of such
structures to dynamic effects. One way of addressing this short-
coming, without increasing the deck stiffness and hence the weight
of the bridge, is to provide an additional inverse pre-tensioned

cable under the deck. This not only enhances the bridge stiffness
but also increases its load carrying ability. The cable system of
interest therefore consists of a bi-concave cable truss as shown
on Fig. 1. The system consists of two major cables anchored at their
ends, a series of pin-ended hangers attached to the cables support-
ing a lightweight deck whose stiffness can be neglected.

Such a structural system is essentially discrete. It is not surpris-
ing therefore that the finite element method has been successfully
used to analyse these structures [1–10]. Nonetheless, analysing
these structures with the finite element method is not a straight-
forward process. A particular caution must be observed because
of the risk of an element undergoing compression. In such a case,
the stiffness in compression of the element in question must be
cancelled and its load redistributed to the neighbouring ones. If
the number of compressed elements is quite high, the instability
of the structure becomes inevitable, and the solution process
diverges. However, when the number of cables in the network
becomes high, it is possible to approximate the network by a con-
tinuous system leading to analytical methods of analysis [11–23];
the spacers and the ties are replaced by a continuous inextensible
diaphragm. Indeed, because they are presented in the form of exact
mathematical expressions, closed form analytical solutions offer
many advantages such as: a clear view into how variables, and
interactions between variables, affect the result, efficiency, and

http://dx.doi.org/10.1016/j.engstruct.2016.05.025
0141-0296/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: a_sadaoui@yahoo.com (A. Sadaoui), lattari_kamel@hotmail.fr

(K. Lattari), a.khennane@adfa.edu.au (A. Khennane).

Engineering Structures 123 (2016) 97–107

Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier .com/ locate /engstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2016.05.025&domain=pdf
http://dx.doi.org/10.1016/j.engstruct.2016.05.025
mailto:a_sadaoui@yahoo.com
mailto:lattari_kamel@hotmail.fr
mailto:a.khennane@adfa.edu.au
http://dx.doi.org/10.1016/j.engstruct.2016.05.025
http://www.sciencedirect.com/science/journal/01410296
http://www.elsevier.com/locate/engstruct


hence better understanding. Most importantly, they can be used by
engineers in preliminary conceptual designs for dimensioning of
cable truss structures.

The development of closed form solutions is however based on
very simplifying assumptions. Quite often, the second order terms
in the equations of cable equilibrium and compatibility conditions
are neglected to obtain linearised approximation to analyse the
static equilibrium under external loads. Additional assumptions,
such as the total weight of the structure being equal to zero at
the time of the pre-tensioning, the absence of the stay cables,
and the imposed loading being uniformly distributed of the whole
or half the span, are also made, which categorically excludes the
presence of concentrated loads or their combination with uniform
loads. The aim of this work therefore is to develop a succinct
method, which is easy to use, yet complete, sufficiently accurate,
and reliable for the analysis of these structures under vertical
loads. However, the following assumptions define the conditions
of validity of the method:

1. the cables are perfectly flexible;
2. the hangers are inextensible;
3. the relatively tensioned cables have a sag/rise over the span of

about 1/10 or less;
4. the cables are parabolic in their initial states.

2. Initial equilibrium

For the sake of clarity in the equations to follow, the indices 0
and 1 refer respectively to the main and deck cables. For example,
and as shown in Fig. 2, the force H1 refers to the pre-tension in the
deck cable. Additionally, to differentiate between external loading
and internally generated forces, the latter will be referred to as
actions.

To maintain equilibrium, the pre-tension H1 in the deck cable
generates a uniformly distributed action x1 in the diaphragm. If
x0 is the weight per unit length of the cable truss, then the dis-
tributed action x0 acting on the main cable is given as:

x0 ¼ x1 þx0 ð1Þ
The top and bottom cables are assumed to be parabolic. In its

principal axes (x0,y0), the profile of the top cable is given as:

y0 ¼ 4f 0
ðL0Þ2

x0ðL0 � x0Þ ð2Þ

Introducing a change of variables, x0 ¼ x= cosðh0Þ and
L0 ¼ L= cosðh0Þ, it follows that

n0 ¼ 4f 0
L2

xðL� xÞ ð3Þ

Similarly, the profile of the deck cable is given as:

n1 ¼ �4f 1
L2

xðL� xÞ ð4Þ

Consider a cut a distance x as shown in Fig. 3a.
The force TC0 in the deck cable can be decomposed into two

components: one along the vertical axis VC0 ¼ x1L
2 , which represents

the vertical reaction due the uniformly distributed load x1, and
another one along one of the principal axes of the parabola, which
in turn is decomposed into two components H1 and
R1 ¼ H1 tanðh1Þ.

Considering moment equilibrium with respect to an axis z
located at a distance x, it follows:

X
M=x ¼ MðxÞ þx1L

2
x�x1x2

2
� H1ð�n1 þ x tan h1Þ

þ H1 tan h1x

¼ 0 ð5Þ
Note that n1 is by definition a negative quantity.

Taking into account the hypothesis stating that the cable is flex-
ible and the bending moment is equal to zero at any point x,
MðxÞ ¼ 0, it follows that:

x1L
2

x�x1x2

2
þ H1n1 ¼ 0 ð6Þ

Introducing l1 ¼ x1x
2 ðx� LÞ, which represents the moment cre-

ated by the uniformly distributed action x1 on a uniformly loaded
and simply supported beam as shown on Fig. 3b, it follows:

�l1 ¼ H1n1 ) n1 ¼ �l1

H1
ð7Þ

Using Eq. (4) yields;

H1 ¼ x1L
2

8f 1
ð8Þ

Proceeding similarly for the main cable, and in virtue of Eq. (1),
it follows:

Fig. 1. Bi-concave cable truss footbridge.

Fig. 2. Initial conditions. Fig. 3. Bending moment in the deck cable.
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