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a b s t r a c t

The structural configuration of slender long-span suspendomes from the construction stage to the final
operational stage is critical for evaluating structural safety and resiliency. In the present study, a modified
double-control form-finding (MDFF) method is proposed with consideration of the construction process
and the friction of cable–strut joints based on a transient structural model of a suspendome. Based on the
total Lagrangian increment formulation, the incremental equilibrium equation is built to include geomet-
ric nonlinearity. Afterwards, in the first construction step, the nodal displacement, displacement condi-
tion and the tangent stiffness matrix are built, and the finite element equations are calculated based
on the existing members using the geometric nonlinear finite element method (FEM). The internal force
and displacement can be obtained. In the subsequent construction stages, the nodal displacement,
displacement condition and the tangent stiffness matrix are modified based on the newly added
members and the friction of the cable–strut joints in present stage. Throughout the whole construction
process, the inverse iteration method is used to control the structural configuration, and the initial stress
increment method is used to control the cable force. After repeating the above steps, iterations are done
in each key construction stage until the convergence criteria are met. The result is the final configuration
of the structure including the geometry and cable forces. Based on the results of a numerical test on a
suspendome, the proposed MDFF is found to be more accurate than the traditional double-control form
finding method (DFF).

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Suspendomes, which were proposed by Kawaguchi et al. [1–3],
are single-layer lattice domes (SLDs) that are stiffened with a
tensegric system. Since the upper SLDs provide rigid support and
reduce the flexibility of the lower tensegric system, they overcome
some disadvantages of cable domes and SLDs [4]. Consequently,
suspendomes have been widely used for long span public buildings
such as the primary roof systems for public gymnasiums and
stadiums [5,6]. However, due to their high flexibility [3], the
structural configurations of suspendomes change during the
construction process. Therefore, the structural performance of a
suspendome during the construction stage could be completely
different from that in the service stage [7]. In order to ensure
structural safety, it is essential to closely monitor the structural

behavior of suspendomes during the construction stage. To this
end, many construction methods, including force-finding and
form-finding method, were proposed to find the pre-stress control
value and zero-state configuration [8,9].

In the force-finding method, the initial strain that corresponds
to the designed pre-stress force is calculated, and the zero-state
configuration is built to meet the designed state configuration
[10]. These methods were originally proposed for cable domes
prior to their adaptation to suspendomes. Based on the flexibility
method, Hanaor proposed a unified method for the analysis and
pre-stress design of prestressable structures [11]. Pellegrino and
Calladine applied singular value decomposition (SVD) to obtain
the independent self-stress modes as well as the independent
displacement modes [12,13]. Considering the inherent geometric
symmetry of cable domes, Yuan and Dong proposed the concept
of feasible integral pre-stress modes [14] and a general method—
referred to as double SVD (DSVD)—for the determination of the
initial pre-stress distribution of cable domes with various forms
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[15]. Based on linear adjustment theory, a new numerical
algorithm was presented for the initial pre-stress-finding proce-
dure of complete cable–strut assemblies [16]. Employing these
methods, the ideal initial pre-stress can be effectively obtained.

Besides the force-finding problems of domes, there are also
form-finding problems. A narrow definition of form-finding was
recently offered by Bletzinger [17] based on the former works of
Lewis [18] and Haber and Abel [19]: the act of finding an equilib-
rium shape in a given boundary with respect to a certain stress
state. In the last five decades, several methods of form-finding have
been developed. It is possible to categorize these into three fami-
lies: (a) stiffness matrix methods (SMMs), (b) geometric stiffness
methods (GSMs), and (c) dynamic equilibrium methods (DEMs).
SMMs are based on using the standard elastic and geometric stiff-
ness matrices [20]. GSMs are material independent, having only a
geometric stiffness. In several cases, starting with the force density
method [21], the ratio of force-to-length is a central unit in the
methodology. Several subsequent methods can be expressed as
generalizations or extensions of the force density method, being
independent of element type and often discussing the prescription
of forces rather than force densities. DEMs solve the problem of
dynamic equilibrium to arrive at a steady-state solution, which is
equivalent to the static solution of static equilibrium [22].

In the construction process, the form- and force-finding prob-
lems are more complex since the configuration and force balance
will change during the process and interact with each other.
During the construction process, the cables are usually
pre-stressed individually or in groups. The forces in the cables that
are pre-stressed earlier will change after the remaining cables are
pre-stressed [6,23,24]. Therefore, cable pre-stressing analysis is
performed to control the pre-stress forces in cables during the
construction process [25,26]. However, owing to the highly
indeterminate nature of suspendomes, it is not easy to effectively
control the cable configuration during the construction process.
To manage such problems, a no-scaffold construction method
was used for small-span structures, and several cable forces were
selected as the control parameters in the analysis [27].

As mentioned above, form- and force-finding should both be
considered [28]. Hence, it is crucial to track and control the force
balance and configuration during the construction process for
long-span pre-stressed structures [29]. Qin [30] proposed a
method for controlling both the configuration and force balance
of suspendomes during construction. Subsequently, Chen and Liu
developed the double-control form-finding method (DFF), which
considered the construction process for controlling both the
configuration and force balance [31]. However, the friction of
cable–strut joints was not considered in this work despite the fact
that friction affects the final configuration and force balance. In
contrast, the method presented in this study does consider the
friction of cable–strut joints.

In the present study, a new form-finding algorithm with control
of the cable configuration, cable force, and friction of cable–strut
joints is proposed. First, the geometric nonlinearity is included in
the FEM formula considering both the construction method and
process. Then, the modified double-control form-finding (MDFF)
method is proposed. Afterwards, both DFF and MDFF are applied
to a numerical example of a suspendome. From the results, the
errors associated with the cable force and node geometry are found
to be much smaller using the proposed algorithm than with using
DFF.

2. Geometric nonlinear analysis

Due to the high flexibility of suspendomes, the geometric non-
linear effect has to be considered in the analysis. Based on the total

Lagrangian increment formulation (TL) [12,32], an incremental
equilibrium equation considering the geometric nonlinearity was
derived. Based on the principle of virtual work in TL,Z
Ve
dðfe�gÞTfrgdV � dðfa�gÞTfFg ¼ 0; ð1Þ

where {F} denotes the equivalent nodal load vector and {e⁄} denotes
the virtual strain, which corresponds to virtual displacement vector
{a⁄}.

Considering the geometric nonlinearity, the strain–displace-
ment incremental relationship is expressed as

dfeg ¼ ½B�dfag; ð2Þ
where d{e} and d{a} denote the strain increment and nodal
displacement increment, respectively, which are the differentials
of strain and displacement, and ½B� is the incremental strain matrix
with large deformation expressed as

½B� ¼ ½B0� þ ½BL�; ð3Þ
where [B0] is constant corresponding to the linear strain and [BL] is
related to the nonlinear displacement.

Similar to Eq. (2), the virtual strain variation vector can be
expressed as a function of the virtual nodal displacement variation
vector

dfe�g ¼ ½B�dfa�g: ð4Þ
Substituting Eq. (4) into Eq. (1) yieldsZ

V
½B�TfrgdV � fFg ¼ 0: ð5Þ

Differentiating Eq. (5) yieldsZ
V
d½B�TfrgdV þ

Z
V
½B�TdfrgdV ¼ dfFg: ð6Þ

Considering Eq. (2), the relationship between the stress
increment and strain increment can be expressed as

dfrg ¼ ½D�dfeg ¼ ½D�ð½B0� þ ½BL�Þdfag; ð7Þ
where [D] denotes the stress–strain relationship matrix. Therefore,
the second integral on the left side of Eq. (6) can be expressed asZ
V
½B�TdfrgdV ¼ ð½K0� þ ½KL�Þdfag; ð8Þ

where [K0] denotes the linear stiffness matrix and [KL] denotes the
initial displacement matrix:

½K0� ¼
Z
V
½B0�T½D�½B0�dV ; ð9Þ

½KL� ¼
Z
V
½B0�T½D�½BL�dV þ

Z
V
½BL�T½D�½B0�dV þ

Z
V
½BL�T½D�½BL�dV : ð10Þ

The first integral on the left side of Eq. (6) can be expressed asZ
V
d½B�TfrgdV ¼ ½Kr�dfag; ð11Þ

where [Kr] denotes the geometric stiffness matrix of the element:

½Kr� ¼
Z
V
d½BL�T½D�ð½B0� þ ½BL�ÞdV ;

which includes the effect of element stress for the element stiffness
matrix.

According to Eqs. (9)–(11) and Eq. (6),

½KT�dfag ¼ dfFg; ð12Þ
where [KT] denotes the tangent stiffness matrix:

½KT� ¼ ½K0� þ ½KL� þ ½Kr�: ð13Þ
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