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a b s t r a c t

This paper presents a numerical procedure based on the finite particle method (FPM) for the nonlinear
dynamic collapse analysis of plane steel frames with semi-rigid connections. The FPM can be used to
model the plane frame with finite separated particles; in particular, geometric nonlinearity and dynamic
fracture. Fictitious motion was used to consider the geometrical nonlinearity, and the explicit time inte-
gration method was used for solving the dynamic equilibrium equations. In the FPM, particles are free to
separate from each other, which is advantageous in the simulation of member fracture. To simulate
member fracture, the fracture criterion and fracture model of the FPM were developed. Furthermore,
to simulate the rigidity of a steel beam–column connection, an independent zero-length element was
adopted, which can consider the influence of nonlinear and hysteretic connection stiffness. The nonlinear
response results were compared with those of existing studies to verify the accuracy of the proposed
numerical procedure. Additionally, the collapse analysis of a Vogel six-story frame showed that frames
with semi-rigid connections have greater anti-collapse capacity than those with rigid connections do.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Beam–column connections of steel frames are neither fully rigid
nor ideally hinged. In reality, the behavior of connections is more
complicated than in the two aforementioned simple extreme cases.
The rigidity of a semi-rigid connection affects the strength and dis-
placement response of steel frames considerably, and therefore,
over the past 20 years, several numerical studies [1–5] and exper-
iments [6–8] have been conducted to address the connection
rigidity.

To construct a mathematical model of the connection behavior
on the basis of experimental observations, both linear and nonlin-
ear semi-rigid connection models are used in the numerical simu-
lations. The stiffness of linear semi-rigid connections is assumed to
be constant [9,10], whereas that of nonlinear semi-rigid connec-
tions varies with the loading magnitudes [11–14]. Therefore,
although the linear model can be easily implemented, it does not
consider the nonlinear behavior of semi-rigid connections. By
contrast, the nonlinear model is more accurate in capturing the
nonlinear moment–rotation relationship. In addition to the
relationship between the bending moment and rotation, physical
models of semi-rigid joins, including the zero-length spring

element [15] and the multi-degree of freedom spring system
[16,17], have also attracted the attention of numerous researchers,
and so on.

In all the aforementioned studies, the nonlinear dynamic
behavior of plane frames with semirigid connections has been
extensively investigated, but the collapse behavior of these semi-
rigid frames has rarely been examined. The main reason for this
is that the numerical models in the studies were based on the con-
ventional finite element method (FEM). The collapse of structures
involves strong nonlinearities and discontinuities, and therefore,
viable alternatives to the standard FEM must be considered. Thus,
collapse behavior is not easy to investigate without special treat-
ments and modifications.

Unlike the Finite Element Method and other mesh-free meth-
ods, the Finite Particle Method (FPM) [18–21] is derived from vec-
tor mechanics [22,23]. This method can be used to model a domain
consisting of finite particles instead of a continuous mathematical
body and involves the use of Newton’s second law to describe the
motions of all particles. In this method, unlike the FEM, the equilib-
rium equations for stress are not derived from variational princi-
ples. Equilibrium is instead enforced on each particle, resulting in
the nodal internal force and external force being constantly bal-
anced. In the basic numerical method used in the present study,
strategies for addressing geometric nonlinearity and dynamic frac-
ture are simple and straightforward.
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The FPM is superior for the nonlinear dynamic collapse analysis
of semi-rigid steel frames for the following reasons: (1) Fictitious
motion is used to separate rigid body motion and pure deformation
of the system, and therefor, geometrical nonlinearity can be
addressed naturally in this formulation. (2) The motion equation
of each particle is a vector equation and every term of the equation
is clearly expressed. Because explicit time integration is used, the
nonlinear dynamic response of steel frames can be obtained with-
out any iteration. (3) Because the FPM is a particle method, it is
possible to add or delete particles and elements in the analysis
domain, which is crucial for the simulation of member fracture.
Recently, the FPM has been successfully applied to the mechanism
analysis of kinematically indeterminate bar assemblies [18],
motion analysis of deployable structures containing beam and
rod hinge element [19], post-buckling analysis of space structures
[20], and progressive failure analysis of a cantilever truss structure
[21].

One of the main objectives of this study was to propose a mod-
eling strategy involving the FPM for appropriately representing the
semirigid connection response under dynamic loads, considering
geometric and material nonlinearity. Another crucial investigation
was related to member fracture resulting from accidental loading
or an earthquake, which introduces structural discontinuity and
changes the structural topology.

The remainder of this paper is organized as follows. The funda-
mentals of the FPM, including the discretization of the structure,
the basic particle motion equations, and solution procedures, are
briefly described. FPM techniques for analyzing geometrical non-
linearities and member fracture are then illustrated. In this study,
an independent zero-length element considering with nonlinear
and hysteretic connection stiffness was adopted for representing
the rigidity of a steel beam–column connection. The nonlinear
response results are compared with those of existing studies to
verify the accuracy of the proposed numerical procedure. Finally
an analysis framework, which was proposed in this study, was
used for the collapse analysis of a Vogel six-story semi-rigid frame
under dynamic loads.

2. Finite particle method

2.1. Structural discretization

The FPM can be used to model the analyzed domain consisting
of finite particles. The structural mass is assumed to be represented
by each particle. Particles in the structure are connected by ele-
ments, which have no mass. Therefore, they are in static equilib-
rium. The deformation of elements can represent the force
relationship and position variations between the particles con-
nected to them. According to these assumptions, an analysis
domain can be modeled using a set of particles and connected ele-
ments, as shown in Fig. 1.

2.2. Motion equation

The motion equation of an arbitrary particle a follows Newton’s
second law,

Ma
€da ¼ Fext

a � Fint
a � Fdmp

a : ð1Þ

where Ma is the mass matrix, €da is the acceleration vector, and Fext
a

and Fint
a are the external and internal force vector of particle a,

respectively. The parameter Fint
a equals the summation of the inter-

nal nodal forces exerted by the elements connected to the particle
a. The formulations for internal forces of the elements are derived

later. The parameter Fdmp
a is the damping force vector given by

Fdmp
a ¼ lMa

_da, where l is the damping factor and has the same def-
inition as it does in the dynamic relaxation method [24].

Because we focused on planar structures in this study, each par-
ticle was considered to have two translational degrees and one
rotational degree of freedom. The discrete model of a planar frame
is shown in Fig. 2. The motion equations for an arbitrary particle a
of the planar frame are
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wherema and Ia are the mass and moment of inertia lumped at par-
ticle a, respectively. Furthermore, we have ma ¼ 1

2

Pn
i¼1m

l
i, where n

is the number of the elements connected to particle a, and ml
i is

the mass of the ith element connected to particle a. We also have

Ia ¼ 1
2

Pn
i¼1I

l
i ¼ 1

2

Pn
i¼1m

l
iðrliÞ

2
, where rli is the radius of gyration of

the ith element connected to particle a.
Because every particle in Eq. (1) is considered to be in dynamic

equilibrium under the internal and external force, the static and
dynamic analysis can be combined into a single procedure.
Numerous methods can be employed to find the solution for
Eq. (1). To avoid an iterative solution procedure, explicit time inte-
gration was suggested in this study. If a simple central difference is
adopted, the velocity and acceleration can be approximated as

_dn ¼ 1
2Dt

ðdnþ1 � dn�1Þ; ð3Þ
€dn ¼ 1

Dt2
ðdnþ1 � 2dn þ dn�1Þ; ð4Þ

where dn+1, dn, and dn�1 are the displacements of an arbitrary par-
ticle at steps n + 1, n, and n � 1, respectively, and Dt is a constant
time increment. Substituting Eqs. (3) and (4) into Eq. (1) yields

dnþ1 ¼ 2
2þ lDt

� �
Dt2

ma
Fext
n � Fint

n

� �
þ 4

2þ lDt

� �
dn

� 2� lDt
2þ lDt

� �
dn�1: ð5Þ

This equation presents a simple and explicit formula that can be
used for determining displacements of structures.

2.3. FPM for modeling geometric nonlinearity

Structural geometric nonlinearities include rigid body motion,
large rotation and large deformation. It is crucial to remove the
rigid body motion and rotation from the structural displacement.
In the FPM, fictitious motion (including fictitious reverse motion
and fictitious forward motion) is used to address geometric nonlin-
ear problems in calculating the internal force of the element [19].

The fictitious motion is now briefly explained using a 2D beam
element. Element 12 moves from 12 (at time ta) to 1020 (at time tb)
in a time interval Dt. Because the internal forces are related only to

Fig. 1. FPM model of an analysis domain.
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