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a b s t r a c t

Predictive models are essential in dam safety assessment. They have been traditionally based on simple
statistical tools such as the hydrostatic-season-time (HST) model. These tools are well known to have
limitations in terms of accuracy and reliability. In the recent years, the examples of application of
machine learning and related techniques are becoming more frequent as an alternative to HST. While
they proved to feature higher flexibility and prediction accuracy, they are also more difficult to interpret.
As a consequence, the vast majority of the research is limited to prediction accuracy estimation. In this
work, one of the most popular machine learning techniques (boosted regression trees), was applied to
model 8 radial displacements and 4 leakage flows at La Baells Dam. The possibilities of model interpre-
tation were explored: the relative influence of each predictor was computed, and the partial dependence
plots were obtained. Both results were analysed to draw conclusions on dam response to environmental
variables, and its evolution over time. The results show that this technique can efficiently identify dam
performance changes with higher flexibility and reliability than simple regression models.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dam monitoring is essential to ensure its proper operation and
its long-term safety [1]. One of the main tasks to be carried out is
the comparison between the expected response and that registered
by the monitoring system, to understand the dam behaviour and to
detect potential anomalies. In this context, predictive models are
necessary to estimate the dam response in a given situation.

Data-based tools allow building predictive models based on
monitoring data, i.e., without explicitly considering the physical
properties of the dam and the foundation. The hydrostatic-
season-time (HST) model [2] is the most widely applied, and the
only generally accepted by practitioners.

HST is based on multiple linear regression considering the three
most influential external variables: hydrostatic load, air tempera-
ture and time. The main advantages of HST are:

1. It frequently provides useful estimations of displacements in
concrete dams [3].

2. It is simple and thus easily interpretable: the effect of each
external variable can be isolated in a straightforward manner,
since they are cumulative.

3. Since the thermal effect is considered as a periodic function, the
time series of air temperature are not required. This widens the
possibilities of application, as only the reservoir level variation
is needs to be available to build an HST model.

4. It is well known by practitioners and frequently applied in
several countries [3].

Nonetheless, HST also features conceptual limitations that
damage the prediction accuracy [3] and may lead to misinterpreta-
tion of the results [4]. For example, it is based on the assumption
that the hydrostatic load and the temperature are independent,
whereas it is obviously not the case: the thermal field in the dam
body, especially in the vicinity of the water surface, is strongly
dependant on the water temperature in the upstream face [5]. In
turn, the thermal load influences the stress and displacement
fields.

Several modifications to the original HST model have been
proposed to overcome these drawbacks. They focus on improving
the consideration of the thermal load, by taking into account the
actual air temperature instead of the historical mean [6], or the
effect of the water temperature on the upstream face [3,7].
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In the recent years, non-parametric techniques have emerged as
an alternative to HST for building data-based behaviour models [8],
e.g. support vector machines (SVN) [9], neural networks (NN) [10],
adaptive neuro-fuzzy systems (ANFIS) [11], among others [8]. In
general, these tools are more suitable to model non-linear cause-
effect relations, as well as interaction among external variables,
as that previously mentioned between hydrostatic load and tem-
perature. On the contrary, they are typically more difficult to inter-
pret, what led them to be termed as ‘‘black box” models (e.g. [12]).

Most of the published works focused on building predictive
models whose accuracy was generally higher than that offered
by HST (e.g. [10,13,14]). Since the resulting model was seldom
analysed, little information was provided for dam safety assess-
ment. Some exceptions worth mentioning, though simple, were
due to Santillán et al. [15], Mata [10] and Cheng and Zheng [16].

Therefore, dam engineers face a dilemma: the HST model is
widely known and used and easily interpretable. However, it is
based on some incorrect assumptions, and its accuracy can be
increased. On the other hand, more flexible and accurate models
are available, but they are more difficult to implement and analyse.
The same problem arose in the field of statistics [17].

The objective of this work is to investigate the possibilities of
interpretation of one of these black box models to:

1. Identify the effect of each external variable on the dam
behaviour.

2. Detect the temporal evolution of the dam response.
3. Provide meaningful information to draw conclusions about dam

safety.

Among the plethora of machine learning techniques available
[18], a previous comparative study [13] showed boosted regres-
sion trees (BRT) as one of the more appropriate tools for the pre-
diction of dam response. In this paper, the technique was further
explored, with focus on the interpretation of the results for dam
behaviour identification. In particular, the partial dependence
plots were examined to isolate the effect of each action, and
the relative influence (RI) was computed to identify the strength
of each input–output relation. Furthermore, the results were
interpreted from an overall viewpoint to draw conclusions on
the dam behaviour.

The method was applied to the analysis of La Baells Dam, as
compared to the conventional HST model.

The rest of the paper is organised as follows. A brief introduc-
tion to BRT is presented, including the methods for interpretation.
Then, the case study and the HST version taken as reference are
described. The results are included and interpreted in terms of
the dam behaviour, and the differences between both methods
are discussed.

2. Methods

2.1. Boosted regression trees

The objective of a predictive model is to estimate the value of an
output variable Y 2 R (i.e. radial displacement or leakage), based
on a set of predictors (reservoir level, air temperature, etc.)
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Fig. 1. Geometry and location of the monitoring devices in La Baells Dam. Left: view from downstream. Right: highest cross-section.
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Fig. 2. Time series of the reservoir level at La Baells Dam.

Table 1
Predictor variables considered for the initial BRT model (M1).

Code Group Type Period (days)

Level Hydrostatic load Original –

Lev007 Hydrostatic load Moving average 7
Lev014 14
Lev030 30
Lev060 60
Lev090 90
Lev180 180

Tair Air temperature Moving average 1
Tair007 7
Tair014 14
Tair030 30
Tair060 60
Tair090 90
Tair180 180

Rain Rainfall Accumulated 1
Rain030 30
Rain060 60
Rain090 90
Rain180 180

NDay Time Original –
Year –

Month Season Original –

n010 Hydrostatic load Rate of variation 10
n020 20
n030 30
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