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a b s t r a c t

Operational modal analysis (OMA), where only the responses are utilized, has been applied to various
engineering problems more commonly due to its advantages in real life implementations. A frequency
and spatial domain decomposition method for operational modal analysis making use of strain measure-
ments is presented in this paper. With the proposed algorithm, accurate global characteristics of a struc-
ture can be obtained from only the measured strain responses. Singular value decomposition, power
spectrum enhancement, and the least square fitting techniques are adopted to decouple and obtain the
strain modes one by one. Strain modal analysis and acceleration modal analysis are conducted simulta-
neously to extract the modal parameters of a four-span bridge model with a pair of heavily coupled
modes. The processes and the results are carefully compared with each other. Starting from the abnormal
strain modes observed, the accidental change of a boundary condition of the bridge model is successfully
detected, and also accurately located by the correlation calculation of strain mode shapes.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Modal analysis is used to obtain global characteristics of a
structure, such as modal frequencies and damping ratios. It has
been widely applied to vibration troubleshooting, structural opti-
mal design, model updating, and structural health monitoring in
aerospace, mechanical and civil engineering. Based on the
vibration testing technique, a large variety of algorithms for signal
processing and data analysis are presented.

Conventionally, a modal test is conducted with some special
excitation devices, such as shakers or impact hammers, which
exert excitation forces on the test subjects. The excitation force
and the resulting response are simultaneously recorded by various
transducers and data acquisition systems. To obtain the modal
parameters, frequency response functions or impulse response
functions are generally estimated from the input and output time
histories. Due to the requirement of a noise-free environment
and the need for complex artificial excitation devices, such testing,
usually, can only be performed in the laboratory. As a result, the
modal analysis that makes use of both input and output data is

named Experimental Modal Analysis (EMA) [1]. According to the
number of input and output, many single-input/single-output
(SISO), single-input/multiple-output (SIMO) and multiple-input/
multiple-output (MIMO) modal identification algorithms in the
time [2,3], frequency [4–6] and spatial domains [7,8] are
developed.

From an EMA test, comparatively good results can be obtained.
However, it is not feasible to perform an EMA test for large struc-
tures in the field testing. They may be too large to be easily excited
by the artificial excitation devices. Moreover, such structures are
always subjected to ambient or natural excitations under opera-
tional conditions, which cannot be measured. This situation brings
out operational modal analysis (OMA), in which only the responses
are utilized. After attracting attention in the early 1990 s, OMA has
been applied to civil, aerospace and mechanical engineering more
and more widely. It is believed that the real dynamic characteris-
tics of structures can be better revealed under real operational con-
ditions than under laboratory conditions. An OMA test can easily
and quickly be conducted, since the troublesome installation of
excitation equipment and simulation of boundary conditions are
no longer needed. From the modal identification point of view,
the natural excitation types such as wind, traffic and micro-
tremor are of multi-input type naturally, and consequently the
coupled or even repeated modes are able to be identified.
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Based on the calculation of the auto- and cross-correlation func-
tions of the response time histories, which have similar properties
to the impulse response functions, a natural excitation technique
(NExT) [9] is proposed. According to the NExT technique, most of
the time domain MIMO identification algorithms, such as poly-
reference complex exponential (PRCE) [10], extended Ibrahim time
domain (EITD) [11], and eigenvalue realization algorithm (ERA) [3]
can be used to extract modal parameters for operational modal
analysis. Besides NExT, random decrement technique (RDT)
[12,13]) has also been successfully applied to time domain opera-
tional modal analysis by estimating the random decrement func-
tions instead of correlation functions. The auto-regression
moving average vector (ARMAV) model [14] can also be employed
for operational modal identification by computing the modal
parameters from the coefficient matrices of the AR polynomials.
Stochastic Subspace Identification (SSI) method [15,16] is thought
to be one of the most effective identification algorithms in the time
domain operational modal analysis. Many advanced mathematical
tools, such as orthogonal projection, orthogonal-triangular (QR)
decomposition, singular value decomposition (SVD) and least
square technique are employed in the SSI algorithm. The
covariance-driven type SSI requires the estimation of the covari-
ance matrix at first, whereas the data-driven type SSI makes direct
use of stochastic response data to identify modal parameters.

The major drawbacks of time domain identification algorithms
are intensive computation and noise modes. It is usually a time-
consuming process to extract modal parameters applying time
domain algorithms, especially the algorithms that require nonlin-
ear iteration. The noise modes are generated not only by measure-
ment noise, but also by nonlinearity, leakage, computation and so
on. The noise modes lead to difficulty in determining the model
order and distinguishing the real modes from spurious modes.

In frequency domain, the peak-picking (PP) method is simple
and rapid, however, it can only deal with well-separated modes
and get approximate damping ratios by half-power band method.
Based on the PP technique and singular value decomposition
(SVD), Brinker et al. [17] developed a frequency domain decompo-
sition (FDD) method, which has provided an ease of use and has
been able to identify closely coupled or even repeated modes. An
enhanced FDD (EFDD) [18] was developed later on to extract the
damping ratio from the inverse fast Fourier transformation (IFFT)
of singular value plot. The frequency and spatial domain decompo-
sition (FSDD) method [19] was proposed in 2005, in which the
modal frequencies and damping ratios are estimated from the
enhanced power spectrum density (PSD) directly, without the
necessity to perform IFFT. FSDD greatly improves the performance
of FDD type algorithms, and has been widely applied in various
engineering fields. In recent years, some transmissibility based
operational modal analysis methods [20–23] with the theoretical
advantage of independency from the characteristics of excitations
have been developed. However, problems like being unable to
identify repeated modes, existence of computational modes, and
even lack of ability to estimate damping ratios are still big obsta-
cles encountered in many applications of these kind of methods.

Conventional modal testing generally utilizes displacement
responses or their derivatives with respect to time, i.e. velocity
and acceleration, and all identification algorithms mentioned
above are based on them. However, strain and stress are the
parameters that have been related directly to the strength of mate-
rials and thus, can be used directly in integrity evaluation of struc-
tures. In recent years, strain sensor techniques have begun to
develop more rapidly. Besides the commonly used metal-foil strain
gauges, the optical fiber Bragg gratings (FBG) [24] and piezoelectric
strain sensors [25] are gaining increasing attention in the engineer-
ing fields. The FBG sensors are small sized, lightweight, distance-
independent, high precision, and can be used to measure very high

strain. The piezoelectric strain sensors are reusable, have a high
frequency range, and are compatible with the popular signal con-
ditioners and data acquisition systems, making them extremely
attractive.

Strain modal analysis was first proposed in the 1980 s [26–28].
Similar to the displacement/acceleration modes, strain modes can
also reflect the inherent dynamic characteristics of a structure.
Additionally, the strain modes are more sensitive to local damage
[29], such as holes, grooves, and cracks. Many researchers have
derived the analytical expressions of strain frequency response
function (FRF), and have studied the relationship between dis-
placement FRF and strain FRF [30]. Some classical modal identifica-
tion algorithms for displacement/acceleration modal analysis, such
as ERA and SSI, were applied to extract modal parameters from
strain responses or strain FRF.

This paper presents a modal decomposition method in fre-
quency and spatial domain specifically for strain measurements.
Based on its displacement version, the algorithm is derived step
by step for strain based modal analysis so as to use only output
data without the need for excitation. Acceleration and strain modal
analysis are both conducted to extract the modal parameters of a
4-span bridge model and the results are compared to verify the
strain modal identification algorithm. An accidental change of the
boundary condition of the 4-span bridge model is finally found
by the observation and analysis of the strain modes.

2. Theoretical background

According to the modal superposition theorem, the displace-
ment vector can be expressed by the modal coordinates and mode
shapes [30].

fug ¼
XN
r¼1

qrfurg ð1Þ

fug is the displacement vector. qr is the rth modal coordinate, and
furg is the rth displacement mode vector. The strain is the partial
derivative of the displacement. As an example, the normal strain
in x direction may be described as:
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where fue
rg ¼ @furg

@x represents the strain mode vector. In the steady
state of the system, the modal coordinate, a function of frequency
and time, can be expressed as:

qr ¼
furgTfFgejxt

kr �x2mr þ jxcr
ð3Þ

where kr , mr and cr are the rth modal stiffness, mass and damping
terms respectively. fFg is the force vector. By substituting Eq. (3)
into Eq. (2), the following expression is acquired:
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From Eq. (4), the strain frequency response function (SFRF) can be
obtained as:

½He� ¼
XN
r¼1

ue
r

� �furgT
kr �x2mr þ jxcr

ð5Þ

Eq. (5) reveals that the SFRF matrix is unsymmetrical and does
not obey the Maxwell’s reciprocity theorem, which is totally differ-
ent from the displacement FRF. It can also be expressed in the form
of partial fractions of poles and residues:
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