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a b s t r a c t

Taking into account the composite material damping and elastic behavior, the dynamic response of thin-
walled FRP pipelines made of symmetric and balanced laminate, under moving singular pressure shock is
derived. The methodology is based on double integral transforms and generalized functions’ properties.
An analytical inversion of the derived Laplace transform is achieved and implementation of the solution
on a long multi-layered E-Glass/Epoxy FRP pipeline under fluid-hammer conditions is discussed.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In last decades, the use of FRP materials in pipeline applications
has been gradually increasing throughout the world due to their
excellent mechanical and chemical properties. The propagation of
pressure waves in liquid-filled pipes is correlated to industrial
problems of water hammer and other types of oscillating pressure
phenomena [1]. When a pressure shock is traveling along a pipe,
flexural waves are generated on its wall. Since both flow character-
istics and anisotropic material properties of the laminated wall of
FRP pipes are controlling the dynamic displacements, derivation
of an accurate model for dynamic response simulation should take
into account both elastic and damping parameters [2]. Numerical
studies regarding dynamic flow through cylindrical vessels have
been reported for pulsating flow in rigid vessels e.g. [3] or fluid-
pipe interaction and wave propagation in isotropic pipes e.g. [4].
Apart from the above researches, recent studies have analyzed suc-
cessfully the dynamic response of filament wound pipes e.g. [5,6],
however, they neglect the damping characteristics of the FRP
material and contain analyses mostly for harmonic pressure oscil-
lations. Even though some experimental procedures e.g. [7] have
been used for strain measurements on CFRP tubes under impulsive
loading, according to the author’s knowledge there is a lack of
models for time-depended radial displacements’ prediction for
FRP pipelines under transient loading conditions, taking into
account both damping and elastic material properties.

In the present work, an analytic solution for radial displace-
ments motion simulation of long multi-layered filament wound
pipelines under moving pressure shock of Dirac Delta type
pðx; tÞ ¼ Po � dðx� a � tÞ is derived. The proposed solution takes into
account the FRP material’s layout as well as its elastic and damping
characteristics. By using Fourier sine and Laplace integral trans-
forms and generalized functions’ properties, the derived partial dif-
ferential equation (PDE) of the dynamic radial displacement wðx; tÞ
is transformed to an algebraic one containing the integral transfor-
mation of the variable. The achieved analytical inversion of the
Laplace transform and numerical inversion of Fourier transform
yields the final solution. The proposed solution has the following
advantages: (a) It takes into account the FRP material damping
properties as well as the translational inertia and elastic resistance
effects; (b) It is expressed in terms of simple and easily calculated
integrals, without infinite series or complex variables. Since the
study of fluid–structure interaction phenomena is beyond the tar-
gets of this research, the derived solution can be used only as an
approximation of FRP pipelines’ response in fluid hammer
conditions.

2. Dynamic radial displacement model for the wall of an FRP
cylindrical shell made by a symmetric and balanced laminate

2.1. Free vibrations (no damping)

The model of the laminated axisymmetric thin-walled shell
shown in Fig. 1 is used to derive the dynamic equation of motion.
Let’s denote by w, u, t the displacement components from the
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middle surface in the r; x;u direction respectively. The following
matrix equation provides the relationship between the stress
resultants applied to the wall’s laminate, and the middle surface
strains and curvatures:
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In the above equation the parameters Aij;Bij;Dij (i, j = 1, 2, 6) are
given by the following relations:

Aij ¼
XN
k¼1

Qijk zk � zk�1ð Þ ð2Þ

Bij ¼ 1
2

XN
k¼1

Qijk z2k � z2k�1

� � ð3Þ

Dij ¼ 1
3

XN
k¼1

Qijk z3k � z3k�1

� � ð4Þ

For each layer k (Fig. 2) the parameters Qijk are given by the follow-
ing expressions:

Q11k ¼ Q11m
4 þ 2 Q12 þ 2Q66ð Þm2n2 þ Q22n

4 ð5Þ

Q12k ¼ Q11 þ Q12 � 4Q66ð Þm2n2 þ Q12 m4 þ n4� � ð6Þ

Q22k ¼ Q11n
4 þ 2 Q12 þ 2Q66ð Þm2n2 þ Q22m

4 ð7Þ

Q16k ¼ Q11 � Q12 � 2Q66ð Þm3nþ Q12 � Q22 þ 2Q66ð Þmn3 ð8Þ

Q26k ¼ Q11 � Q12 � 2Q66ð Þmn3 þ Q12 � Q22 þ 2Q66ð Þm3n ð9Þ

Q66k ¼ Q11 þ Q22 � 2Q12 � 2Q66ð Þm2n2 þ Q66 m4 þ n4
� � ð10Þ

m ¼ cos#; n ¼ sin# ð11Þ

Q11 ¼ E11

1� m12m21
; Q12 ¼ m12E22

1� m12m21
; Q22 ¼ E22

1� m12m21
;

Q66 ¼ G12 ð12Þ
The material constants E11; E22 are the modulus of elasticity, m12,

m21 are the Poisson’s ratios, and G12 is the shear modulus in the
principal directions 1–2.

For the case of symmetric and balanced laminates the following
simplifications e.g. [8] are valid:
Bij ¼ 0; A16 ¼ 0; A26 ¼ 0 ð13Þ

To derive the Green’s function for a multi-layered FRP pipeline
under moving singular pressure shock, the following motion equa-
tion [5] will be solved:
L13uþ L23tþ L33w ¼ �p ð14Þ
where

L13 ¼ A12
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Fig. 1. Coordinate system for a FRP cylindrical shell made by a symmetric and
balanced laminate.

Fig. 2. Stacking sequence of the laminated material.
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